

NICEATM Computational Tools and Resources Supporting Alternative Test Method Development and Evaluation

J Abedini¹, S Bell¹, K Mansouri¹, E McAfee², J Phillips², X Chang¹, AL Karmaus¹, B Cook¹, D Allen¹, W Casey³, N Kleinstreuer³ ¹ILS, RTP, NC, USA; ²Sciome, RTP, NC, USA, ³NIH/NIEHS/DNTP/NICEATM, RTP, NC, USA

Role of Computational Approaches in Chemical Safety Testing

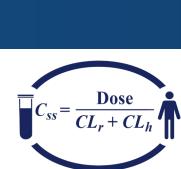
The NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) develops and evaluates alternatives to animal use for chemical safety testing. As part of these activities, NICEATM reviews large amounts of data from a wide variety of in vivo and in vitro test methods that inform on a chemical's potential bioactivity. Computational tools and resources play a critical role in data access and evaluations such as:

- Aggregating and tagging data relative to toxicity endpoints of regulatory interest.
- Predictive modeling of in vivo toxicities using biologically relevant in vitro assay data.
- Exploring how chemical properties influence bioactivity patterns or assay predictive performance.
- Relating in vitro assay activity concentrations to in vivo doses and potential human exposures.
- Mapping data to biological systems to provide context needed for interpretation.
- Predicting physicochemical property values where experimental data are not available.

The Integrated Chemical Environment (ICE)

ICE is an access point for NICEATM data and tools. ICE allows users with limited computational expertise to explore and utilize these data and tools in the development and application of new approach methodologies.

ICE provides free online access to:

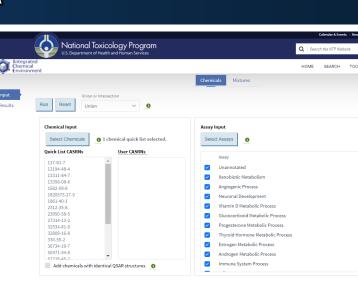

- Curated in vivo and in vitro data related to toxicity testing.
- In silico toxicity and parameter predictions and chemical property data
- Curated lists of chemicals with well-characterized
 Data analysis: allows characterization of data toxic effects (reference chemical lists).
- Computational tools for chemical characterization and predicting toxicity.

ICE supports:

- Data integration: brings together available data, including data on formulations.
- Data visualization: enables dynamic graphical exploration with publication-quality graphics
- using online workflows.
- FAIR (findable, accessible, interoperable and reusable) data principles.

- ICE includes quantitative structure-activity relationship (QSAR) predictions for >800,000 chemicals for toxicity endpoints and chemical parameters useful in modeling
- Chemical quick lists offer fast and easy searching options and can be useful in test method evaluation.

- Agency's (EPA) httk R package.


- See how EAD values differ for chemicals with similar in vitro bioactivity or chemical structure.
- Gain insight on the suitability of in vitro assays for

- Examine properties of ICE Chemical Quick Lists or user-provided CASRNs.

ICE Search and Data

- The ICE Search tool can query assay and chemical property data for over 10,000 chemicals
- ICE data are organized by toxicity endpoints of regulatory interest
- Data organization and annotation leverages expert curation and mapping to establish terminologies to support interoperability.

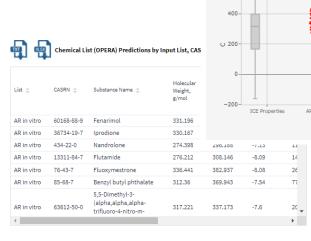
In Vitro to In Vivo Extrapolation (IVIVE)

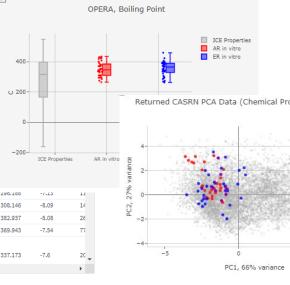
The In Vitro to In Vivo Extrapolation (IVIVE) tool uses high-throughput in vitro data from the Tox21 program to estimate an in vivo equivalent administered dose (EAD) that would result in the plasma concentration of a chemical equal to the activity concentration in a given in vitro assay.

Modeling options include:

- One-compartment pharmacokinetic model including
- simulation of population diversity.
- Three-compartment physiologically based pharmacokinetic
- (PBPK) models using the U.S. Environmental Protection
- (http://dx.doi.org/10.18637/jss.v079.i04)
- Species-specific (rat/human) predictions.
- Multiple dosing routes (intravenous, oral, inhalation).

With the IVIVE tool users can:


- Obtain estimates of in vivo exposure levels that could cause an adverse effect.
- predicting the effect level for in vivo endpoints.



Stand-alone version available for use with custom datasets: https://github.com/NIEHS/ICE_IVIVEpipeline

Chemical Characterization

- The Chemical Characterization tool queries chemicals for available physiochemical properties and ADME properties predicted by the OPEn q(sar) App (OPERA) model. Users can:
- Compare the properties of two sets of chemicals.
- Results are returned as:
- Summary table of chemical properties.
- Interactive plots for visual comparisons of individual parameters.
- Principal component analysis (PCA) plots.

Visit ICE https://ice.ntp.niehs.nih.gov/

Contact Us

To get announcements of ICE updates and other NICEATM activities, visit the NIH mailing list page for NICEATM News at https://list.nih.gov/cgibin/wa.exe?SUBED1=niceatm-I&A=1 and click "Subscribe."

https://github.com/NIEHS/OPERA

 General structural properties Environmental fate https://jcheminf.biomedcentral.com/articles/ 10.1186/s13321-019-0384-1 ADME properties Errection unbound to placeme proteine (Eu) 	<text><list-item></list-item></text>			PERA)	
 General structural properties Environmental fate https://denimitablomeducaritacide/ 10.1986/t3323-019-0338-1 ADME operties Fraction unbound to plasma proteins (Fu) Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Bstrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity Modeling Suite (https://doi/org/10.1289/EhPF5580) CATMoS: Collaborative Acute Toxicity Modeling Suite (https://doi/org/10.1016/j.comtox.2018.08.002) *800,000 curated chemical structures derived from EPA's DSSTox Database MP deling point Kotal dissociation constant VP dopor pressure visit distructures derived from EPA's DSSTox Database MP deling point Motel structures derived from EPA's DSSTox Database MP deling point Motel structures derived from EPA's DSSTox Database MP deling point Mp deling point	 General structural properties Environmental fate hysidhemithumbendentationwardies/ to.1188/1332/1018-0384.1 ADME properties Fraction unbound to plasma proteins (Fu). Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1610267) COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi/org/10.1089/ehp.1610267) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi/org/10.108/ehp.1610267) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi/org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSTox Database Prediction COMPAR standalone app COMPAR standalone app COMPAR standalone app Compare appoint Compa	rang	ge of toxicity endpoints of regulatory interest and prop		
 General structural properties Environmental fate mescificaemint biomedicantial convirticies/ too:1186is1332190-384-1 ADME properties Fraction unbound to plasma proteins (Fu) Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ep.1510267) CoMPARA: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) CATMoS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) S800,000 curated chemical structures derived from EPA's DSTE Database S800,000 curated chemical structures derived from EPA's DSTE Database CHERA standalone app 	 Centre a structure and properties Environmental fate https://doi.9034-1 ADME properties Fraction unbound to plasma proteins (Fu) Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi/10.1289/ehp.1510267) CoMPARA: Collaborative Acute Toxicity Modeling Suite (https://doi/10.1289/ehp.1510267) CATMoS: Collaborative Acute Toxicity Modeling Suite (https://doi/10.1289/ehp.1510267) CATMoS: Collaborative Acute Toxicity Modeling Suite (https://doi/10.1289/ehp.1510267) CATMoS: Collaborative Acute Toxicity Modeling Suite (https://doi/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSSTox Database >800,000 curated chemical structures derived from EPA's DSSTox Database COMPARA: Acute Acute Toxicity Medition 25° C CDERA standalone app With structure acute for and for an acute a	• Pł		ODE	PA Predictions Available in ICE
 https://doi.org/10.106/j.comtox.2018.08.002 https://doi.org/10.1016/j.comtox.2018.08.002 CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Acute Oral Toxicity measures (GHS and categories as well as LDG) CATMOS Categories as well as LDG) COMPARA Androgon receptor Inding and agories as antigonist activity BP Biling point Citit Human hepatic intrinsic clearance Fu Human plasma fraction unbound HL Henry's Law constant KOA Octanolvair partition coefficient KOA Octanolvair partition coefficient Solo,000 curated chemical Structures derived from EPA's by Structures activity Relationship VP Valor pressure VP Valor pressure VP Soluce as Could Human hepa	https://journee.interfail.com/anticles/ 10.1886/13321-019084-1 • ADME properties • Fraction unbound to plasma proteins (Fu). • Intrinsic clearance (Clint) • Models for toxicity endpoints • CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) • COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi/org/10.1289/ehp.1510267) • COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi/org/10.1289/ehp.1510267) • CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi/org/10.1289/Ehp.580) • Solo,000 curated chemical structures derived from EPA's DSTox Database • Solo,000 curated chemical structures derived from EPA's • Deciever • Deciever • Clear Structure: Solo Solo • Solo,000 curated chemical structures derived from EPA's • Solo,000 curated chemical structures derived from EPA's • Deciever • Deciev				
10.1988/13321-019-0384-1 • ADME properties • ADME properties • ADME properties • Traction unbound to plasma proteins (Fu) • Intrinsic clearance (Clint) • Models for toxicity endpoints • CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (ntps://doi/10.1289/epn.p1510267) • COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi/10.1289/eHP580) • Compara: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1289/EHP580) • Bollow Control (10.1016/j.comtox.2018.08.002) • Note: Solaborative drived from EPA's DSSTox Database • S800,000 curated chemical structures derived from EPA's DSSTox Database • S800,000 curated chemical structures derived from EPA's DSSTox Database • Prediction • DEERA standalone app • OPERA standalone app • Otanol water Acutivity Relationship • DEERA standalone app • Otanol water Acutivity Relationship • DEERA standalone app • Operative Medice and the appendice of the acute of	 10/118/sit3321-019-0384-1 ADME properties Fraction unbound to plasma proteins (Fu) Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (htps://doi/10.1289/ebp.1510267) CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (htps://doi.org/10.1289/ebp.5580) CatIMoS: Collaborative Acute Toxicity Modeling Suite (htps://doi.org/10.1016/j.comtox.2018.08.002) S800,000 curated chemical structures derived from EPA's DSST xx Database Cereare Toxicity Relationship Compara Activity Activity Relatio			Model	•
 Fraction unbound to plasma proteins (Fu) Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSSTox Database >800,000 curated chemical structures derived from EPA's DSSTox Database OPERA standalone app Compare A antagonist activity (https://doi.org/10.1289/etapestic) COMPARA: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSSTox Database COMPARA standalone app Compare A antagonist activity (https://doi.org/10.1016/j.comtox.2018.08.002) COMPARA: Acids dissociation constant Ve vapor pressure WS Water solubility at 25° C Compare A constant Ve vapor pressure WS Water solubility at 25° C 	 Fraction unbound to plasma proteins (Fu) Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi/org/10.1289/EHP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.11016/j.comtox.2018.08.002) \$800,000 curated chemical structures derived from EPA's DSSTox Database Cereative Acute Toxicity Modeling Suite (https://doi.org/10.11016/j.comtox.2018.08.002) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1289/EHP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.11016/j.comtox.2018.08.002) Settor Database Cereative Activity Structures derived from EPA's DSSTox Database Cereative Activity Relationship Cereative Activity Relative Activity Relative	·		CATMoS	
 Praction unbound to plasma proteins (Fu) Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (ntps://doi/10.1289/EnProject for Androgen Receptor Activity Brediction Project for Androgen Receptor Activity Intps://doi.org/10.1289/EnProject for Androgen Receptor Activity (ntps://doi.org/10.1289/EnProject for Androgen Receptor Activity Modeling Suite (https://doi.org/10.1289/EnProject for Environmentation coefficient CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) S800,000 curated chemical structures derived from EPA's DSSTox Database S800,000 curated chemical structures derived from EPA's DSSTox Database Setting and activity at 25° C 	 Fraction unbound to plasma proteins (Fu) Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510287) CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMoS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSTox Database Structures derived from EPA's DSTox Database Prediction OPERA standalone app COMPAR ation (for the project for structure) (for the project for structure) (for the project for a structure) (for the projec	• A[• •	CERAPP	
 Intrinsic clearance (Clint) Models for toxicity endpoints CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi org/10.1289/EHP5580) CoATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi org/10.1189/EHP5580) GATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi org/10.1016/j.comtox.2018.08.002) *800,000 curated chemical structures derived from EPA's DSSTox Database *800,000 curated chemical structures derived from EPA's DSSTox Database *00 Fereine Structure-Activity Relationship *00 Fereine Activity Relati	 Intrinsic clearance (Clint) Models for toxicity endpoints CERAPF: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/ehp.15680) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSSTox Database >800,000 curated chemical structures derived from EPA's DSSTox Database COERA Standalone app OFERA standalone app Coera and the structure activity Relationship (Martin Clint) (Martin Clint) (Martin			CoMPARA	Androgen receptor binding and agonist and
 CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) S800,000 curated chemical structures derived from EPA's DSSTox Database Setting Projection Projection	CERAPP: Collaborative Estrogen Receptor Activity Prediction Project (https://doi/10.1289/ehp.1510267) COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) *800,000 curated chemical structures derived from EPA's DSSTox Database *800,000 curated chemical structures derived from EPA's DSSTox Database *000 Control Contr				
Activity Prediction Project (https://doi/10.1289/ehp.1510267) COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EhP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) P800,000 curated chemical structures derived from EPA's DSSTox Database Prediction Prediction<	Activity Prediction Project (https://doi/10.1289/ehp.1510267) COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) Integration of the structures derived from EPA's DSSTox Database Structures derived from EPA's DSSTox Database Integration of the structures derived from EPA's DSSTox Database Integration of the structure derived from the structure derived from the structure derived from	• Mo			
(https://doi/10.1289/ehp.5150267) • CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EhP5580) • CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) • 8800,000 curated chemical structures derived from EPA's DSSTox Database • 8800,000 curated chemical structures derived from EPA's DSSTox Database • • • • • • • • • • • • • • • • • • •	(https://doi/10.1289/etp.5150267) 9 COMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/Etp/5580) 10 HL Henry's Law constant KOA Octanol-water distribution coefficient LogD Octanol-water distribution coefficient KOA Octanol-water partition coefficient MP Melting point Interstructures derived from EPA's DSSTox Database VP VS Water solubility at 25° C VERENTIAL VP VS Vater solubility at 25° C VERENTIAL VP VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL VIENTIAL <t< td=""><td></td><td></td><td></td><td>Human hepatic intrinsic clearance</td></t<>				Human hepatic intrinsic clearance
 CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMoS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSSTox Database >800,000 curated chemical structures derived from EPA's DSSTox Database Water solubility at 25° C CIPERA standalone app Communication comparison of the model on superliation compariso	 Comparative Modeling Project for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSSTox Database >800,000 curated chemical structures derived from EPA's DSSTox Database Predictions 		5	Fu	Human plasma fraction unbound
for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMoS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSSTox Database	for Androgen Receptor Activity (https://doi.org/10.1289/EHP5580) CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) >800,000 curated chemical structures derived from EPA's DSSTox Database >S00,000 curated chemical structures derived from EPA's DSSTox Database Predictions OPERA standalone app VIII of the standalone app (VIIII of the standalone app (VIIIII of the standalone app (VIIII of the standalone app (VIIIII of the standalone app (VIIII of the standalone app (VIIIII of the standalone app (VIIIII of the standalone app (VIIII of the standalone ap			HL	Henry's Law constant
(https://doi.org/10.1289/EHP5580) - CATMOS: Collaborative Acute Toxicity Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) - S800,000 curated chemical structures derived from EPA's DSSTox Database - S800,000 curated chemical structures derived from EPA's DSSTox Database - MP Melting point - With a structure derived from EPA's DSSTox Database - MP Valor pressure - With a structure derived from EPA's DSSTox Database - MP Valor pressure - With a structure derived from EPA's DSSTox Database - MP Valor pressure - With a structure derived from EPA's DSSTox Database - MP Valor pressure - With a structure derived from EPA's DSSTox Database - MP Valor solubility at 25° C - MP	(https://doi.org/10.1289/EHP5580) (https://doi.org/10.1289/EHP5580) (https://doi.org/10.1016/j.comtox.2018.08.002) S800,000 curated chemical structures derived from EPA's DSSTox Database System of the structure derived from EPA's DSSTox Database Control of the struc	Length: 3 Days		KOA	Octanol/air partition coefficient
 CATMOS: Collaborative Acute Toxicity Modeling Suite (htps://doi.org/10.1016/j.comtox.2018.08.002) S800,000 curated chemical structures derived from EPA's DSTox Database Water solubility at 25° C Wetting point VP Vapor pressure WS Vater solubility at 25° C Metting point (O)SAR (uantitative) Structure-Activity Relationship (DERA standalone app Metting point MP Metting point VP Vapor pressure WS Vater solubility at 25° C 	<complex-block></complex-block>			LogD	Octanol-water distribution coefficient
Modeling Suite (https://doi.org/10.1016/j.comtox.2018.08.002) MP Melting point >800,000 curated chemical structures derived from EPA's DSSTox Database VP Vapor pressure VS Vater solubility at 25° C VS VS	Modeling Suite (htps://doi.org/10.1016/j.comtox.2018.08.002) MP Melting point >800,000 curated chemical structures derived from EPA's DSST ox Database PKa Acidic dissociation constant VP Vapor pressure WS Water solubility at 25° C VS Vater solubility at 25° C Visit solubility at 25° C VS Vater solubility at 25° C Visit solubility at 25° C VS Vater solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubility at 25° C Visit solubility at 25° C VS Visit solubi			LogP	Octanol-water partition coefficient
Interse with the service of the ser					Melting point
************************************	<image/>		(https://doi.org/10.1016/j.comtox.2018.08.002)		
>800,000 curated chemical structures derived from EPA's DSSTox Database WS Water solubility at 25° C (Q)SAR (Q)SAR (Q)SAR With weight and the properties (Q)SAR (Q)SAR WS Untitative) Structure-Activity Relationship (D)STOC SUMMER SUM	>800,000 curated chemical structures derived from EPA's DSTox Database WS Water solubility at 25° C WS Water solubility at 25° C (0)SAR (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship (unitiative) Structure-Activity Relationship	Assay Type		-	
Structures derived from EPA's DSSTox Database (Q)SAR		in vitro			Vapor pressure
(Q)SAR (Q)SAR <td><pre></pre></td> <td>in vitro</td> <td>structures derived from EPA's</td> <td>WS</td> <td>Water solubility at 25° C</td>	<pre></pre>	in vitro	structures derived from EPA's	WS	Water solubility at 25° C
OPERA_CL OPERA models for physchem, environmental fate and tox properties. Version 2.5 (January 2020) OPERA models OPERA models for physchem, environmental fate and tox properties. Version 2.5 (January 2020) OPERA models OPERA models<	OPERA_CL OPERA models for physchem, environmental fate and tox properties. Version 2.5 (January 2020) OPERA is a command line application developed in Matlab providing QSAR models predictions as well as applicability domain and accuracy assessment. Developed by: Kamel Mansouri mansourikamel@gmail.com				= f(4)
OPERA models for physchem, environmental fate and tox properties. Input i Browse Version 2.5 (January 2020) Browse Browse	OPERA models for physchem, environmental fate and tox properties. Version 2.5 (January 2020) Models OPERA is a command line application developed in Matlab providing QSAR models predictions as well as applicability domain and accuracy assessment. Developed by: Kamel Mansouri mansourikamel@gmail.com A models Input i Input i Browse Output Input i Browse Output Input i Browse i Input i Input i Input i Input i Browse i Input i Input Inpu	_			
OPERA is a command line application developed in Matlab providing QSAR models predictions as well as applicability domain and accuracy assessment. Developed by: Kamel Mansouri mansourikamel@gmail.com	Usage: OPERA <argument_list></argument_list>		OPERA models for physchem, environmental fate and tox properties. Version 2.5 (January 2020) OPERA is a command line application developed in Matlab providing QSAR models predictions as well as applicability domain and accuracy assessment. Developed by: Kamel Mansouri mansourikamel@gmail.com kamel.mansouri@nih.gov	Input i Output i Output i Models Dhyschem properties LogP MP BP Environmental fate LogBCF AOH Toxicity endpoints ER (CERAPP) AF	Browse Browse Image: Standardize VPWSHLKOARTpKaLogD BiodegR-BiodegKMKOC R (CoMPARA)AcuteTox (CATMoS)

- Free, open-source and open-data
- Single chemical and batch mode
- Multiple platforms (Windows and Linux)
- Command line and GUI options
- Embeddable libraries (java, C, C++, Python)

https://github.com/NIEHS/OPERA https://ntp.niehs.nih.gov/go/opera https://doi.org/10.1186/s13321-018-0263-1

Acknowledgements

ICE has been funded in whole or in part with federal funds from the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN273201500010C.

The views expressed above do not necessarily represent the official positions of any federal agency. Since the poster was written as part of the official duties of the authors, it can be freely copied.

