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Mixtures

• What types of mixtures?
– Medical devices, cleaning products, mixtures of industrial chemicals, “tank” mixtures; 

agchem, others?

• Additivity
– Datasets are skewed towards nontoxic

– Critical to be transparent about applicability (does it break down where dose response info 
is needed?)

– Mechanistic interactions not taken into account; also no ADME

– Confidentiality of formulations remains a challenge – pharma example: IQ Consortium

• Must address this to successfully build models for mixtures (or to optimize additivity)



Leveraging Artificial Intellegence

• NOTE: need to make sure that the variability dataset is annotated to indicate what
protocol, etc. where possible; this is important to best characterize variability of the
assay based on a consistent protocol

• Ultimately regulators want to know how large of a confidence interval for the model
prediction is OK (or, how far from an available LD50 is OK for the model
prediction?)

• Transparency is essential

• Need to develop a threshold of concordance that indicates the prediction is high 
confidence

• Need to evaluate where the data come from as a variable when looking at model
performance
– i.e., need to be sure that results aren’t by chance (“it’s right for the right reasons”) so that 

regulators can defend/describe results; NOTE – 5th OECD principle: mechanistic interpretation



Information Gaps

– Where current models are successful in predicting LD50 classes:

• Reactives, denaturants, hydrocarbons, chelants, aconitase inhibitors, anticoagulants

– Classes of chemicals/mechanisms for which specific assay/model development is needed to
predict acute toxicity:

• Nervous system, adrenergic compounds, cardiac channel actives, for example

• Metabolism to cyanide, H2S, aconitase, phosphothionates, for example

– Mechanistic read across can be used to fill data gaps

• Need to be careful with metabolic matters & in vitro.

– Limitations of computational models and how can biological information complement their utility:

• Computational models often use read-across without understanding MOA

• Statistical models biased towards non-toxic compounds yet the highly toxic compounds are ones need to
ensure we can identify

• In vitro models should address specific mechanisms, sub-mechanisms and metabolism



Information Gaps

– Misclassification of chemicals by existing in vitro/in silico methods could be due to:

• Unequal GHS distribution; need to tie MOAs to in vitro models; metabolism; cytotoxicity assays vary; 
detoxification; reactive chemistries reacting with water, etc

– Mechanisms of acute lethality are needed for MOAs that drive high acute toxicity

– Mechanistic assays work best for:

• Receptor binding assays w/o metabolism

• Validated screens skin sens, eye/skin irritation

– When are we concerned with mechanism in making a risk assessment decision? When are we 
not, i.e. when can risk assessment decisions be made simply based on LD50/classification 
without mechanistic information? 

• When models predict very high acute toxicity and willing to classify

– Chemical and/or biological clustering can inform testing strategies and regulatory decisions

• Eg., clustering by mechanism for mechanistic read-across



Action Items

• Variability analysis – need it to establish confidence
– Ideally focus the analysis on guideline-like studies (or in comparison to an overall analysis)

• Additivity – EPA-OPP pilot + existing publications
– Can we identify non-toxics without in vivo testing?

• Explore adding biological/mechanistic information to complement in silico 
predictions
– Critical to include metabolism

– Systematically catalog the mechanisms of acute toxicity and available associated assays; match 
these mechanisms to chemicals

• Consider AOPs to identify available information (and where information gaps exist)
– NOTE: can be very simple and don’t require lengthy

• Critical to it all: transparency and training



Acute Mechanisms – Data Gaps

High acute tox
Voltage-gated channels (Na+, K+, Ca++) Dopaminergics
Protein synthesis inhibitors Histaminergics
Dihydrofolate reductase inhibitors Endoplasmic reticulum Ca++ channels
TRPA1 NMDA receptor inhibitors
Adrenergics Cardiac channel blockers
Opioid receptor Remaining AhR scaffolds
Tubulin binders Heme biosynthesis inhibitors
Norepinephrine reuptake inhibitors Serotonin reuptake inhibitors
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