

Building confidence in larval zebrafish behavior assays: From phenotypes to mechanisms

Prof. Dr. Tamara Tal Chemicals in the Environment Research Section Helmholtz Centre for Environmental Research - UFZ ICCVAM Communities of Practice tamara.tal@ufz.de

01.30.2023

350.000

Source: Schmidt et al. 2016. EHP.

 <100 unique chemicals assessed for developmental neurotoxicity in ToxRef DB!

350.000

Source: Watford et al. 2019. PMID: 31340180

 <100 unique chemicals assessed for developmental neurotoxicity in ToxRef DB!

- 1 chemical
- >€1.000.000
- >1 year

350.000

Source: Tsuji and Crofton. 2012. PMID: 22925212.

Motivation: How can we build confidence in zebrafish behavior tests for the detection of neurotoxicity?

- Alternative system
- Translational model
- Inexpensive
- Fast
- Easy to assess neurodevelopment
- Metabolically competent
- 3R compliant

Goal Design and execute a harmonized protocol to test critical points

3

4

1

Light-dark transition test under review by OECD-DNT-Expert group

Determine the added value of the zebrafish behavioral assay for DNT

Discussion

State of the science

Potential incorporation of Zebrafish behavioral assays into the **IVB** or **tiered testing for DNT**

(by Data Analysis)

for DNT assessment

Determine the critical points of zebrafish

Detect the variables affecting the reproducibility

Establish a definitive and effective testing methodology

N. Klüver

Inter-laboratory Verification

State of the science Light-dark transition test

N. Klüver

Rat offspring endpoint	Larval zebrafish test	State of the test
Motor activity	Light-dark transition test	OECD working group; NIEHS SEAZIT Evaluation
	VAMR	PARC
Motor and sensory function	VAMR	PARC
Learning and memory	VAMR	PARC
Brain weight	NA	NA
Histopathological evaluation	NA	NA
Morphometric (quantitative) analysis of the brain	Fish Inspector, post-behavior	Developed, v2 release 2021

PARC (European Partnership for the Assessment of Risks from Chemicals); **SEAZIT** (Systematic Evaluation of the Application of Zebrafish in Toxicology); **VAMR** (Visual and Acoustic Motor Response NAM)

Roadmap for zebrafish developmental and acute neurotoxicity testing Human *in vitro* developmental neurotoxicity test battery

www.ufz.de

Roadmap for zebrafish developmental and acute neurotoxicity testing

In silico models

Source: https://doi.org/10.1016/j.taap.2018.02.008

Roadmap for zebrafish developmental and acute neurotoxicity testing

www.ufz.de

Case study: Expansion to a battery of visual and acoustic stimuli Visual and Acoustic Motor Response (VAMR) New Approach Method (NAM)

David Leuthold

Added novel endpoints Visual startle response

5 s

VSR1

b (s/xd

Motor activity (10⁻²

David Leuthold d е С 2 2 2 0 0 0 100 s 100 s 5 s VSR2 VMR1 VMR2 VMR3 Vehicle (n=440) Stimulus

Added novel endpoints Acoustic startle response

Added novel endpoints Non-associative habituation learning

David Leuthold

10 criteria to demonstrate habituation

Non-associative habituation learning

Source: Rankin et al. 2009. doi: 10.1016/j.nlm.2008.09.012.

10 criteria to demonstrate habituation

Non-associative habituation learning

Source: Rankin et al. 2009. doi: 10.1016/j.nlm.2008.09.012.

10 criteria to demonstrate habituation

Non-associative habituation learning

- Repeated application results in a decrease in response (i.e. habituation)
- With repeated series of habituation training and recovery, decrease in response is more rapid or pronounced (i.e. potentiation of habituation)
- More rapid the frequency of the stimulus, the more rapid and/or pronounced is the habituation

Source: Rankin et al. 2009. doi: 10.1016/j.nlm.2008.09.012.

Added novel endpoints Memory retention

Multiple potential adverse outcomes

Exposure paradigm hacks

interactions that cause persistent structural OR functional effects

MK-801 vs APV Two NMDA receptor antagonists yield different behavior patterns

How can we build confidence in NAMs?

Anchored to AOPs, NAMs are the building blocks of Integrated Approaches to Testing and Assessment

Key event <u>essentiality</u> represents a novel strategy to build confidence in NAMs

- 1. Is there a <u>causal link</u> between exposure, key events, and adverse outcomes?
- 2. Are key events conserved in humans?

MIE: Molecular Initiating Effect KE: Key Event KER: Key Event Relationship AO: Adverse Outcome AOP: Adverse Outcome Pathway

Key event essentiality case study

Can we identify novel disruptors of habituation learning?

David Leuthold

Cytotoxicity limit

www.ufz.de

Unpredicted effects following exposure to clorophene

³⁰

GABA_B receptor agonism (CGP13501) modulates dark phase hyperactivity

GABA_A receptor antagonism (picrotoxin) causes dark phase hyperactivity

Gabriel de Macedo

Does clorophene exposure trigger GABA receptordependent VMR hypoactivity?

Vehicle

VMR3

Picrotoxin

(21.5 µM)

Clorophene (6.8 µM) Clorophene

Picrotoxin

Agonism of GABA receptor by clorophene causes VMR hypoactivity Mode of action 1

Clorophene impairs learning Mode of action 2

Clorophene impairs learning Multiple modes-of-action

Novel AOPs for acute neurotoxicity

Nadia Herold David Leuthold

Looking ahead: Acute neurotoxicity fingerprints Classify hits and identify potential mode of action

Nadia Herold David Leuthold

What about developmental neurotoxicity?

Chemical washout revealed distinct behavior phenotypes

Sebastian Gutsfeld Ifeoluwa Omoyeni

Visual startle response hyperactivity

> 🗎 0.4% DMSO, n=43 🛱 2.48, n=37 🛱 0.4% DMSO, n=43 🧮 2.48, n=42 🗎 0.4% DMSO, n=43 🖨 2.48, n=40 🗎 0.4% DMSO, n=43 🗮 2.48, n=39 PFOS PFOS PFOS PFOS (µM) (µM) (µM) (µM) 📕 7.86, n=23 Ē 4.4. n=40 **7.86. n=32** 4.4, n=38 **=** 7.86. n=30 🗮 4.4. n=34 4.4. n=36 📕 7.86. n=23

What about developmental neurotoxicity?

Chemical washout revealed distinct behavior phenotypes

Sebastian Gutsfeld Ifeoluwa Omoyeni

www.ufz.de

Exposure to structurally similar PFAS elicit same two phenotypes

ield eni

Sebastian Gutsfeld Ifeoluwa Omoyeni

Novel AOP for developmental neurotoxicity

Summary Building confidence in zebrafish DNT/ANT NAMs

- Built an inexpensive screening tool in a translational model, relevant for human and ecological safety assessments
- Our work builds confidence in zebrafish NAM to identify chemicals with the potential to harm the developing nervous system:
 - 1. Expands functionality aligns with OECD TG 426 endpoints
 - 2. Enhances phenotypic resolution to identify putative mode-of-action (conserved in humans)
 - 3. Applies pharmacological manipulation and gene editing to demonstrate causal relationships between key events and adverse outcomes

Our team

UFZ Molecular Toxicology Group Gabriel de Macedo Sebastian Gutsfeld Nadia Herold David Leuthold Ifeoluwa Omoyeni Nicole Schweiger Tamara Tal

UFZ BIOTOX

Nils Klüver Stefan Scholz Wibke Busch

Funding UFZ

Helmholtz Association PARC: European Partnership for the Assessment of Risks from Chemicals