
DNTP/NICEATM Update

ICCVAM Public Forum May 27, 2021

Nicole Kleinstreuer Acting NICEATM Director

- Carcinogenesis
- Developmental Neurotox

Responsive Research

Programs

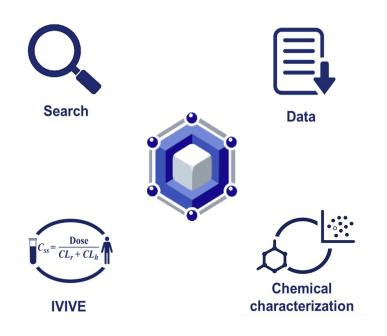
Collaboratively address public health challenges

> Generate trusted scientific information to support decisionmaking

Develop and apply innovative tools and strategies Health Effects Innovation Programs

Strengthening Capabilities Programs

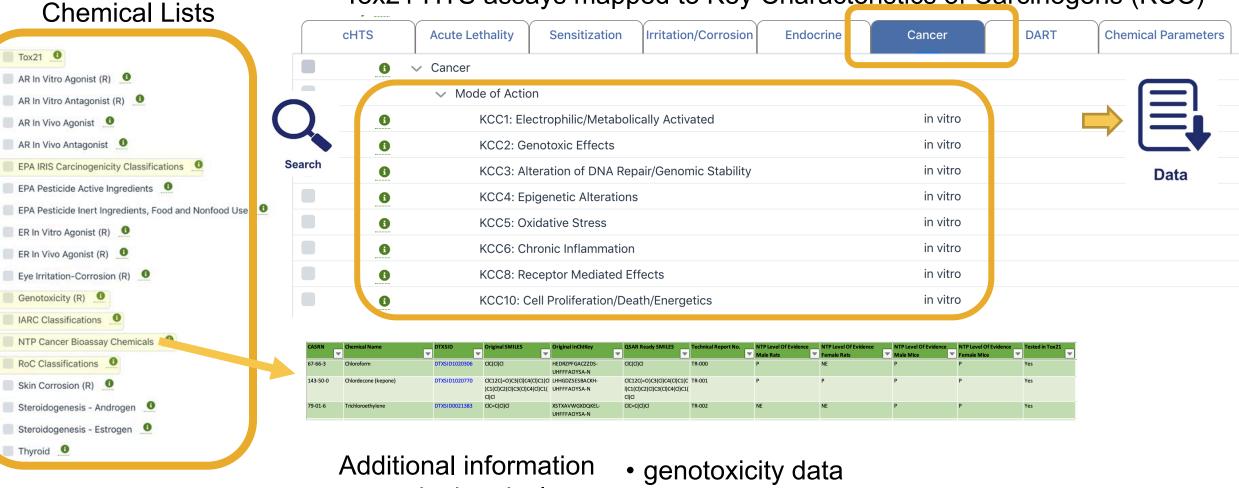
Curated data and search tools


- Organized by toxicity endpoints
- Standardized terminology, units, and formatting
- Curated chemical lists
 - Reference lists with classifications and bioactivity
 - In vitro assays linked with defined terminology
- Computational models
 - In vitro to in vivo extrapolation (IVIVE)
 - Quantitative structure-activity relationship (QSAR) models

Chemical Effects in Biological Systems (CEBS)

https://manticore.niehs.nih.gov/cebssearch

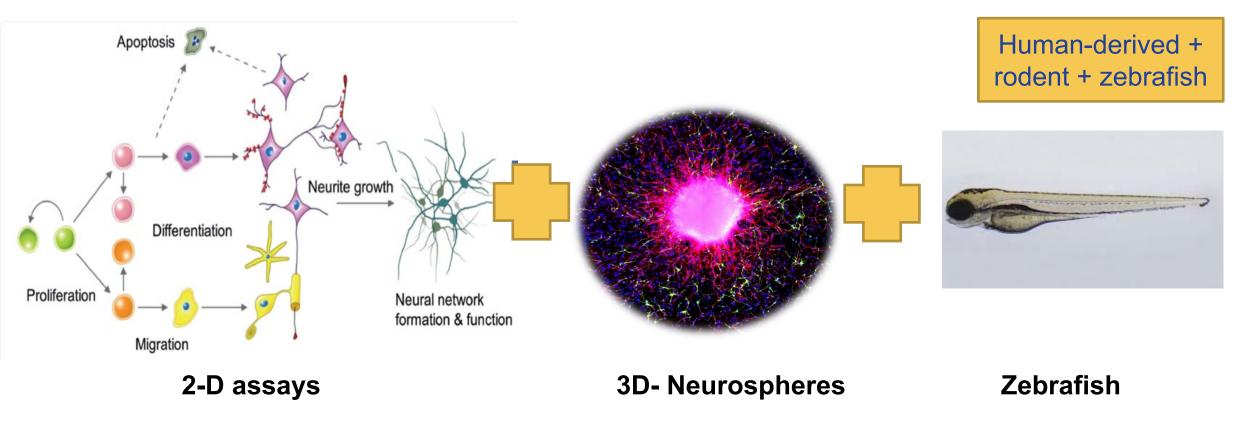
Integrated Chemical Environment (ICE)


https://ice.ntp.niehs.nih.gov/

Integrated Chemical Environment (ICE) database

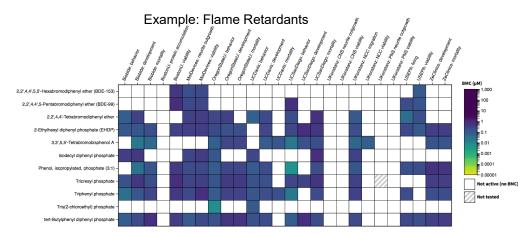
Tox21 HTS assays mapped to Key Characteristics of Carcinogens (KCC)

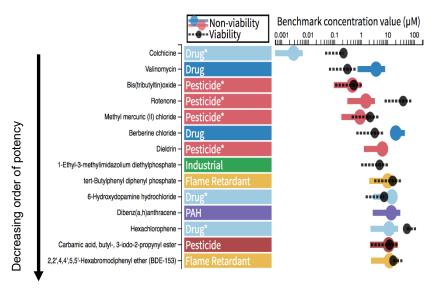
on each chemical:


highest dose tested

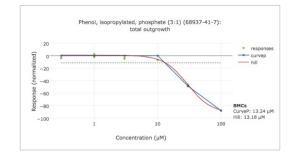
- dose and tissue used for level of evidence call
- type of lesion

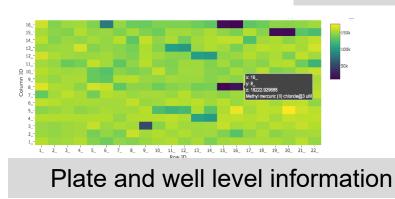
EPA OPP to be added 2Q2021

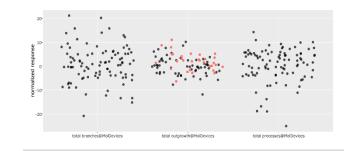

Implement a DNT screening battery that covers key neurodevelopmental events


DNTP's Proposed Battery: Initial Assay Selection

ONT- Data Integration and Visualization Enabling Resource


(DNT-DIVER)


Compare activity of compounds/classes across multiple assays



Compare activity of compounds within an assay

Individual dose-response curves

Control variability in assay

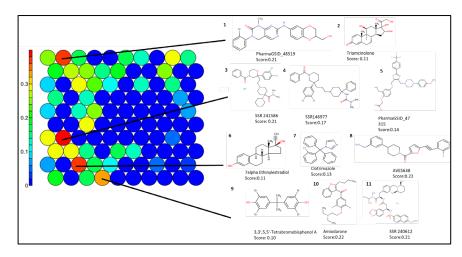
Slide courtesy: DNT HEI PMT

https://sandbox.ntp.niehs.nih.gov/neurotox/

CV HEI Portfolio

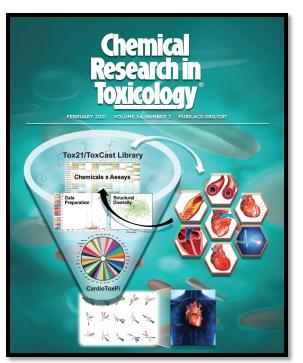
In process/complete	Ongoing	Future			
Define testing framework (CV failure modes)					
CV hazard identification	Evidence map of the literature				
CV QSAR scree	CV QSAR screening tool (test)				
Predictive transcriptomics (build)	Predictive transcriptomics (test)				
Suite of in vitro C	/ testing platforms				
In vivo CV assessment (capability/paradigm dev't)	CV in vivo pilot studies	CV In vivo integration into testing paradigm			
CVD in U3 populations (gap analysis)	n U3 populations (gap analysis) CVD in U3 populations (capability build/disease screen				

CV implementation strategy/decision framework



CardioToxPi: Using Tox21 qHTS Data and Al

Krishna et al. 2020, Chem Res Tox


									Slice		Effect	Slice Color
				KCNH2					ADORA		Vasodialation, alterations in BP	
			PDE	RUNPLE	CACNA	AVPR					Arrhythmia, Alterations in BP	
		MAD				Airi			CHRM		Alterations in BP and HR, tachycardia	
	100000000						HTR		DRD	Dopamine Receptor	Alterations in BP and HR, Vascular relaxation	
	CHRNA						EDNR		EDNR		Alterations in BP, Can exert adverse effects during	
							EDNR		HTR	Serotonine Receptor	Alterations in BP, Potential cardiac valvulopathy	
VEG	ar .		1						AVPR	Vasopressin Receptor	Alterations in BP and HR, Cardiac hypertrophy	
								DRD			Alterations in BP and HR	
VasculatTissue									CACNA	Voltage-Gated Calcium Channel	Alterations in BP, QT prolongation, Arrhythmia	
								CHRM	KCNH2		Prolongation of QT interval of ECG	
								CHION	VEGF	Vascular Endothelial Growth Factor	Alterations in BP , Cardiac Ischemia	
OxidativesStress									VascularTissue	Vascular Tissue	Myocardial ischemia, cardiac Arrhythmias	
								ADRB	Oxidative Stress	Oxidative Stress	Cellular Hypertrophy; Cardiac Cell Death	
					ΠI	/ /		ADRD	MtDysfunction	Mitochondrial Dysfunction	Cardiac dysfunction; Cardiomyopathy	
tDysfunction	-								TissueFactor	Tissue Factor	Alterations in BP and ventricular hypertrophy	
		_			////		-	ADORA	PDE	Phosphodiesterase	Alterations in cardiac contractility, HR and BP	
			-					ADORA	MAO	Monoamine Oxidase	Alterations in BP	
sueFactor			_						JNK	c-Jun N-terminal kinase	Vascular injury, cardiac hypertrophy	
						_			TyrKinase	Tyrosine Kinase	Alterations in BP, LV dysfunction, conduction	
		-				-		TyrKinase	AroPro	Aromatase Protein	Ischemic heart disease	
JNK	-	~	//				_		ERAlpha	Estrogen receptor Alpha	Abnormal cardiac contractility, cardiac hypertrophy	
			< / .						NR3C1	Glucocorticoid receptor	Alterations in BP; Arrhythmia	
			//					SAA		Peroxisome Proliferator		
AP		/ /							PPARG	Activated Receptor V	Cardiac hypertrophy , Atherosclerosis	
			/ /						AP	Activating Protein	Atherosclerosis	
		/						NPA	HIF		Ischaemia disease	
AroPro									NFKB		Atherosclerosis	
								PAI1	TP53		Alteration in cardiac function	
								PAIL		Intercellular adhesion molecule 1	Markers of endothelial dysfunction	
ERAI	pha								IL6	Interleukin 6	Markers of inflammation and oxidative stress	
	Constraint on						tPA		t-PA		Markers of endothelial dysfunction	
	NR3C1								PAI -1	Plasminogen activator inhibitor type	Markers of endothelial dysfunction	
		HIF					1,0		NPA	Natriuretic peptide A	Release in response to elevation in LV filling pressure	
			NEKB		1000	ICAM					Direct promotion of vascular dysfunction	_
				PPARG	TP53				SAA1	Serum amyloid A1	through SAA within vascular tissues	

Self Organizing Map: structural clusters enriched for CV activity

- Special Issue Cover: Computational Toxicology
- Published February 2021
 - QSAR and other in silico studies
 - IVIVE methods
 - Application of NextGen sequencing and HTS data
 - Use of artificial intelligence and machine learning to model critical in vivo toxicity endpoints.

Ongoing NICEATM and ICCVAM Projects

- Integrated Chemical Environment
- OPERA (QSAR/QSPR)
- Reference data curation
- · Variability of in vivo data
- Acute Systemic Toxicity
- Dermal absorption
- Eye and skin irritation
- Skin sensitization
- ZF models (SEAZIT)
- Acute Fish Retrospective
- Carcinogenesis
- Cardiovascular toxicity
- Developmental Toxicity
- Animal-free affinity reagents
- Microphysiological Systems
- Evolving Process of Validation

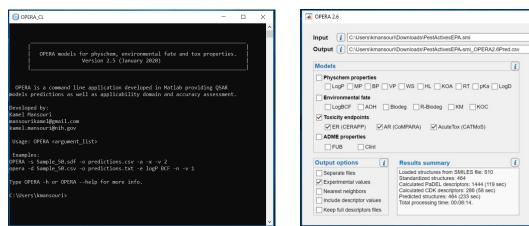
- Summarizes US agency activities to promote alternatives or reduce animal use
 - Contributions from every ICCVAM member agency
- 2018-2019 report published in July 2020, available online at:

https://ntp.niehs.nih.gov/go/2019iccvamreport

Subscribe to NICEATM News email list

https://ntp.niehs.nih.gov/go/niceatm

Acute 6-Pack Alternatives


Dermal lethality	• US EPA Waiver guidance available	
Oral lethality	 In silico (CATMoS) for single chemicals; additivity for formulations under consideration 	
Inhalation lethality	 3D models being evaluated; LC50 database for in silico model development being built 	IN PROGRESS
Eye irritation	• NAMs for Cat I and/or Cat IV (TG 437, 438, 460, 491, 492, 494); Prospective testing ongoing	HEALE
Skin irritation	 NAMs for Cat I or Cat IV (TG 430, 431, 435, 439); Prospective testing ongoing 	
Skin sensitization	 EPA science policy, draft risk assessment, and OECD international DASS guideline 	

Mansouri et al. 2021 EHP; Clippinger et al. 2021 Cut Ocu Tox; Rooney et al. 2021 Reg Tox Pharm; Allen et al. 2021 ALTEX; Hamm et al. 2021 Reg Tox Pharm under review

CATMoS implementation in OPERA

OPERA suite of models:

- Free, open-source, and open-data
- Command line and GUI
- Single chemical and batch mode
- Windows OS and Linux
- Embeddable wrapper libraries in Java, C, C++, and Python

Collaboration with ATWG partners and ICCVAM agencies

Agency	No. Substances	Agency	No. Substances
Air Force	421	EPA OPP	36
Army Public Health Command	18	EPA OPPT	8
Army Edgewood Chemical Biological Center	42	EPA NCCT	4815
CPSC	110	EPA EFED	160
DOT	3671	FDA CFSAN	22

Progress made with EPA EFED

- Compare CATMoS predictions to acute oral toxicity data on 160 pesticides registered in the last 25 years.
- Determine impact on risk assessments, leading to additional curation and characterizing confidence in predictions.

Mansouri et al. 2021 EHP

Browse

Browse

Standardize

Off On

6

σ

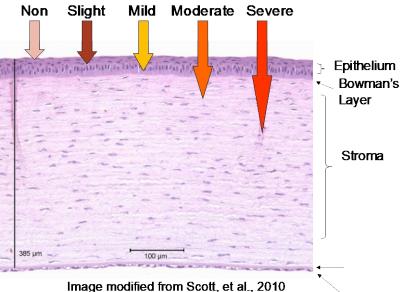
R

Þ

Calculate

Human-relevant approaches for eye corrosion/irritation potential

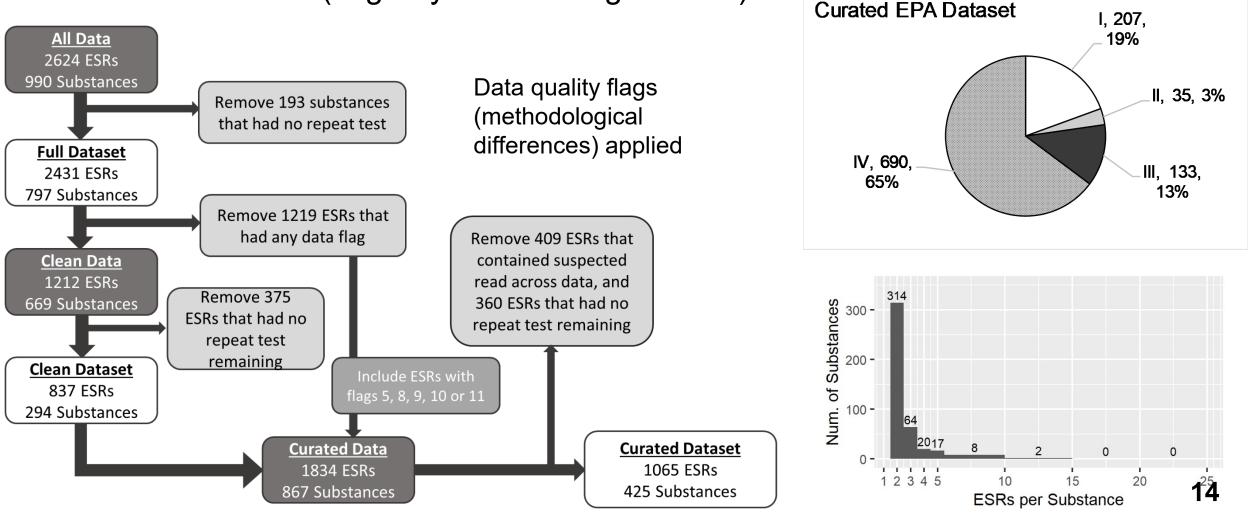
Clippinger et al. 2021 Cut Ocu Tox


Prior GHS category	1	2A	2B	NC
1 (serious eye damage)	73%	16%	0%	10%
2A (irritant)	4%	33%	4%	59%
2B (mild irritant)	0%	4%	16%	80%
NC (non-irritant)	1%	4%	2%	94%

Adapted from Luechtefeld et al., ALTEX 33(2), 2016.

Consider strengths and limitations of all available methods with respect to:

- their relevance to human ocular anatomy
- the mechanisms of eye irritation/corrosion in humans

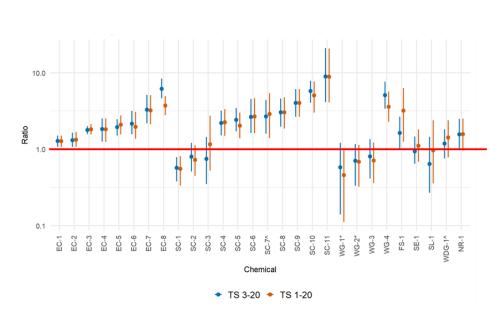

- The rabbit test should not be used as a reference method to demonstrate the validity of *in vitro/ex vivo* assays
- In vitro/ex vivo methods are as or more reliable and relevant than the rabbit test

Curated data for chemicals with multiple study reports
 Rooney et al. 2021 Reg Tox Pharm

Calculated PDII (avg. erythema + avg. edema)

Skin Irritation Conditional Probability Tables

EPA	Category I	Category II	Category III	Category IV
PDII	Corrosive	>5.0	2.1-5.0	0-2.0
Signal Word	DANGER	WARNING	CAUTION	CAUTION
	long-sleeved shirt and	isnort-sleeved shirt and	Long-sleeved shirt and long pants	Long-sleeved shirt and long pants
	socks	socks	socks	socks
· ·	_	Chemical-resistant footwear	Shoes	Shoes
	•		Waterproof or chemical resistant gloves	No minimum
	Irri	tant	Non-i	rritant


urated Dataset	with Bin	ary App	roac
Prior Result	Irritant (Cat I or II)	Non-irritant (Cat III or IV)	
Irritant (Cat I or II)	75.6%	24.4%	
Non-irritant (Cat III or IV)	3.9%	96.1%	

Curated Dataset									
Prior result	COR	=	Ш	IV					
COR	86.3%	4.2%	7.1%	2.5%					
	14.1%	44.9%	20.5%	20.5%					
	6.9%	5.2%	53.6%	34.3%					
IV	0.9%	2.0%	9.1%	88.0%					

Allen et al. 2021 ALTEX

- Absorption through in vitro human skin was found to be similar to, or less than, that observed in rat skin (in vitro and in vivo) for all formulations.
- The human in vitro assay provided a similar or higher estimate of dermal absorption than the triple pack
- For human health risk assessment, in vitro assays using human skin would be preferable. Such tests would be directly relevant to the species of interest (humans) and avoid any overestimation of dermal absorption using rat models.

- However, rat in vitro studies would still have utility if human in vitro data were not available.
- In vitro rat data provide estimates of dermal absorption that are at least as protective as in vivo rat data, and thus could also be considered adequate for use in establishing dermal absorption factors.

triple pack DAF = *rat in vivo* × (*human in vitro* ÷ *rat in vitro*)

- GHS Mixtures Equation mathematical approach to calculating toxicity of mixtures based on components
- Compare LD50s predicted for formulations based on the GHS Mixtures Equation to those determined from in vivo results with the complete formulation.
- Data set consisted of 671 formulations produced by eight companies:
 - 51 antimicrobial cleaning products (AMCPs), 620 agrochemical formulations

			In Vivo EP/	A Category				In Vivo G	BHS Class	ification	
	400 -			395		400 -					382
	350 -					350 -					
	300 -					300 -					
gories	250 -					250 -				235	
t of Cate	250 - 200 - 150 -					200 -					
Count	150 -				157	150 -					
	100 -		115			100 -					
	50 -					50 -			50		
	0-	4				0-	0	4			
		 <= 50 mg/ kg	 > 50 <= 500 mg/ kg	> 500 <= 5000 mg/ kg	IV > 5000 mg/ kg	Category	• 1 <= 5 mg/ kg	2 > 5 <= 50 mg/ kg	3 > 50 <= 300 mg/ kg	4 > 300 <= 2000 mg/ kg	5 > 2000 <= 5000 mg/ kg

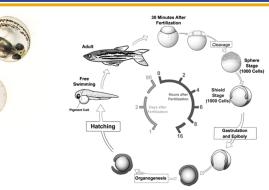
In vivo	In vivo EPA Additivity Classification Within-class					In vivo	G	HS Addi	tivity Cla	ssificatio	on	Within-class
Classification				IV	Concordance	Classification	1	2	3	4	5/NC	Concordance
	2	1	0	0	750/	1	0	0	0	0	0	NA
I	3	1	0	0	75%	2	0	3	1	0	0	75%
II	4	30	61	20	26%	-	0		10	26	10	20%
III	1	34	197	163	50%	.	0	4				
IV	0	1	19	137	87%	4	0	0	17	134	85	57%
	0					5/NC	0	1	4	39	337	88%
Total	8	66	277	320	55%		0	0	· ·			
						Total	0	Ő	32	199	432	72%

79% (128/163) of "discordant" substances (EPA Cat III predicted as Cat IV, yellow highlight) had in vivo LD50 values measured between 2000 and 5000 mg/kg or a limit test LD50 > 2000 mg/kg.

	A	Within-class		
In vivo LD ₅₀	≤50	>50 to ≤500	>500	Concordance
≤50	3	1	0	75%
>50 to ≤500	4	30	81	26%
>500	1	35	514	93%
Total	8	66	595	82%

- Precautionary statements and associated PPE are much more stringent with LD50 < 500 mg/kg; supplementary analysis combined all substances with LD50 > 500 mg/kg together.
- Most "discordant" substances had in vivo LD50s values measured between 2000 and 5000 mg/kg or a limit test LD50 > 2000 mg/kg.
- When considering formulations with LD50 >500 mg/kg together, overall concordance increased from 55% to 82%.
- Within-class concordance for less toxic substances was consistently over 85% regardless of classification system.
- Animal tests are inherently variable. Similar underclassification could also be observed following a repetition of the animal test.
- Our results suggest the mixtures equation is promising for identifying substances that would not be expected to induce toxicity.
- However, the lack of more toxic formulations in the dataset preclude us from reaching definitive conclusions across the spectrum of hazard categories.

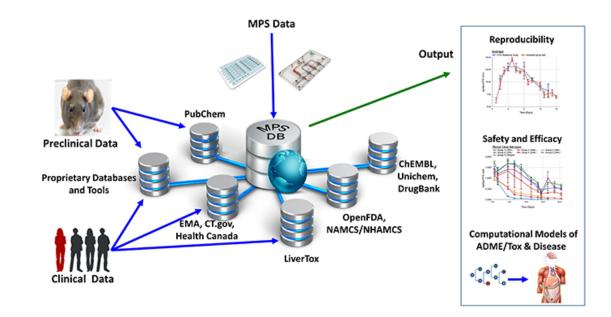
SEAZIT: Systematic Evaluation of the Application of Zebrafish in Toxicology


SEAZIT Goals:

- Provide the scientific basis on which to make a programmatic decision on the further routine use of zebrafish in toxicological evaluation of chemicals
- Provide fundamental knowledge on the use of zebrafish in toxicology, which will support further research endeavors by the academic community

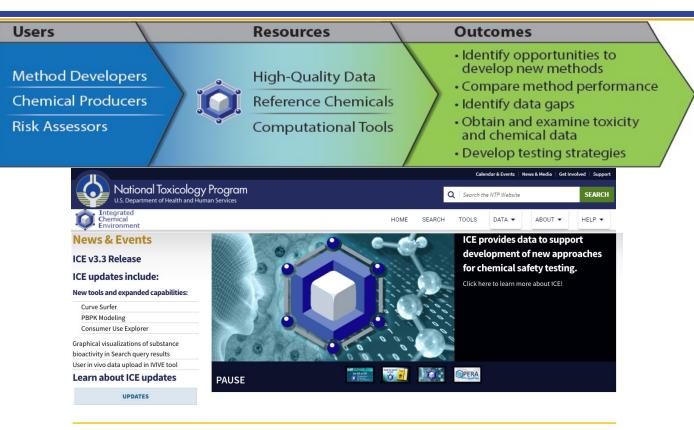
SEAZIT Activities:


- Inter-laboratory study to compare the impact of chorion-on v. chorion-off and single v. repeat exposure
- Reference phenotype atlas for zebrafish screening assays along with a means of differentiating abnormal from normal


19

MPSCoRe: Microphysiological Systems for COVID-19 Research

Joint working group to support global COVID-19 tissue chip research activities Partnership with UK NC3Rs, DoD, NIAID, NCATS.


https://ntp.niehs.nih.gov/go/mps

Development of a COVID-19 Disease Portal in the Microphysiology Systems (MPS) Database (University of Pittsburgh)

Integrated Chemical Environment: ICEv3.3

https://ice.ntp.niehs.nih.gov/

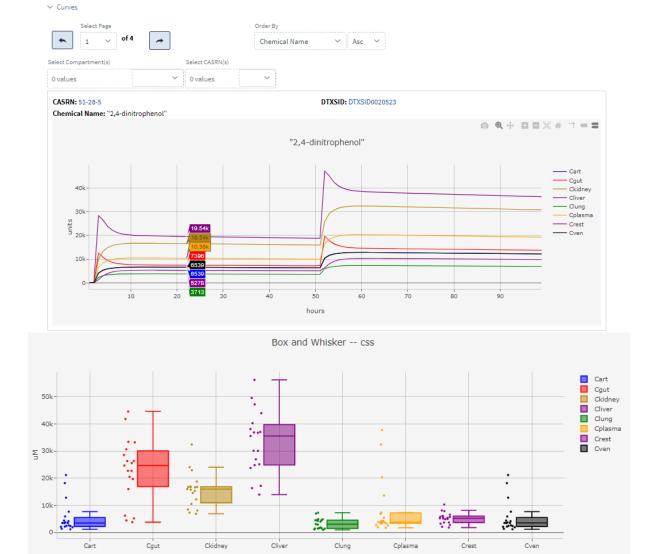
Bell et al. 2017 EHP Bell et al. 2020 Tox In Vitro 21

Curation to assist meaningful assay selection and model building

Select Assays CHTS Mode of Action CHTS Mode of Action Mode of Action Abnormal Growth and Differentiation Angiogenic Process Angiogenic Process Cellular Processes Cellular Stress Response Cellular Stress Response Cellular Stress Response Centro Control Hormone Metabolic Process Steroid Hormone Metabolic Process Steroid Hormone Metabolic Process Centro Control Metabolic Process Centrol Hormone Metabolic Process Centrol Mode Centrol Mode Centrol Mode 				Select Assays 🕕		
 Mode of Action Abnormal Growth and Differentiation Angiogenic Process Angiogenic Process Cellular Processes Cellular Stress Response Cellular Stress Response Cellular Stress Response Cendocrine-Related Processes Steroid Hormone Metabolic Process Steroid Hormone Metabolic Process Thyroid Hormone Metabolic Process Charger Metabolic Process Cenergy Metabolism Process Energy Metabolism Process Cenergy Metabolism Proces Cenergy Metabolism Process Cenerg	Select /	Assays 🕕		cHTS	Mode of Action	
 O KeHTS Abnormal Growth and Differentiation Angiogenic Process Angiogenic Process Cellular Processes Cellular Stress Response Cellular Stress Response Cellular Stress Response Cellular Stress Response Cendocrine-Related Processes Steroid Hormone Metabolic Process Steroid Hormone Metabolic Process Steroid Hormone Metabolic Process Cencer MOAs 		cHTS	Mode of Action			
 Abnormal Growth and Differentiation Abnormal Growth and Differentiation Angiogenic Process Angiogenic Process Cellular Processes Cellular Stress Response Steroid Hormone Metabolism Steroid Hormone Metabolism Thyroid Hormone Metabolic Process Energy Metabolism Process Energy Metabolism Process Epigenetic Process Cancer MOAs 				- V N	lode of Action	
 Angiogenic Process Cellular Processes Cellular Stress Response Cellular Stress Response Cellular Stress Response Cendocrine-Related Processes Steroid Hormone Metabolism Steroid Hormone Metabolic Process Steroid Hormone Metabolic Process Thyroid Hormone Metabolic Process Energy Metabolism Process Energy Metabolism Process Cencer MOAs 		<u> </u>	HTS		> Acute Lethality MOAs	
Image: Strend Hores Image: Strend Hores Image: Strend Hores Image: Strend Hores Image: Strend Hores Image: Strend Hores Image: Strend Hormone Metabolic Image: Strend Hormone Metabolic Image: Strend Hormone Metabolic Image:			Abnormal Growth and Differentiation		 Endocrine MOAs 	tro
 Cellular Processes Cellular Stress Response Cellular Stress Response Cellular Stress Response Cendocrine-Related Processes Steroid Hormone Metabolism Steroid Hormone Metabolic Process Steroid Hormone Metabolic Process Thyroid Hormone Metabolic Process Cenergy Metabolism Process Epigenetic Process Cener Expression Cener Supression Ce			Angiogenic Process		Androgen Metabolic Process	
 Concer MOAs Concer MOAs Concer MOAs 		0	> Cellular Processes		Estrogen Metabolic Process	×
 Endocrine-Related Processes Steroid Hormone Metabolism Steroid Hormone Metabolic Process Thyroid Hormone Metabolic Process Energy Metabolism Process Epigenetic Process Epigenetic Process Cancer MOAs 		0	> Cellular Stress Response		Gene Expression	
 Steroid Hormone Metabolism Thyroid Hormone Metabolic Process Thyroid Hormone Metabolic Process Energy Metabolism Process Epigenetic Process Epigenetic Process Cancer MOAs 			 Endocrine-Related Processes 		Steroidogenesis	sses,
 Thyroid Hormone Metabolic Process Thyroid Hormone Metabolic Process Energy Metabolism Process Epigenetic Process Epigenetic Process Cancer MOAs 			> Steroid Hormone Metabolism		Steroid Hormone Metabolism	_
Image: Construction of the second			Thyraid Harmona Matabalia Brassas		Thyroid Hormone Metabolic Process	_
Progesterone Metabolic Process Cancer MOAs			-		Glucocorticoid Metabolic Process	
Epigenetic Process Cancer MOAs		. .	Energy Metabolism Process		Progesterone Metabolic Process	
tro			> Epigenetic Process			tro
DARTIMOAS			> Gene Expression		> DART MOAs	tro

Salaat Accove

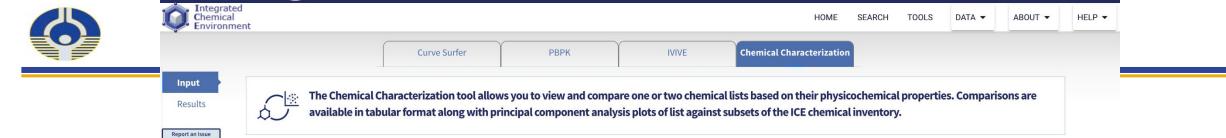
- Curated high-throughput screening data (cHTS) starts with EPA invitrodb and incorporates chemical QC information and technology-specific flags
- Assays are grouped by biological process, mechanistic target, and MoA, and linked to ontologies

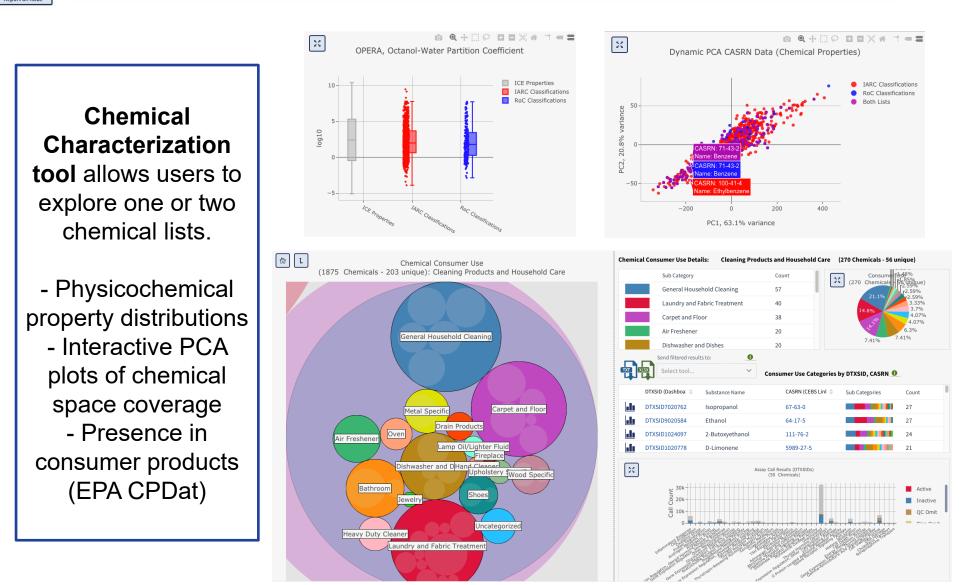

Only showing curves for 200 chemicals. Order By Select Page Please reduce your query to view all of 21 + -Chemical Name ✓ Asc ✓ chemicals. Curve Surfer is an Select CASRN(s) Assay Text Fil... Select Assay(s) Select Call(s) Select Mechanistic Target To View Curves interactive All 0 values \sim 0 values \sim Active X Choose... $\times \sim$ concentration Assay: ACEA_AR_agonist_80hr Assay: ACEA_ER_80hr response Mechanistic Target: Androgen Metabolic Process Mechanistic Target: Estrogen Metabolic Process CASRN: 58-18-4 CASRN: 58-18-4 visualization tool for DTXSID: DTXSID1033664 DTXSID: DTXSID1033664 Chemical Name: 17-Methyltestosterone Chemical Name: 17-Methyltestosterone Winning Curve-Fit Model: Hill cHTS data Winning Curve-Fit Model: Hill AC50: 5.7E-4 AC50: 0.048 ACC: 2.0E-4 ACC: 0.016 Top of Curve: 110.66 Top of Curve: 89.94 Call: Active Call: Active - Select/filter assays View EPA curve (testing purposes only) View EPA curve (testing purposes only) based on \mathbb{Z} \mathbb{Z} ACEA_AR_agonist_80hr ACEA_ER_80hr Mechanistic Target 58-18-4 58-18-4 - View specific - Hill - Hill 120-120-Concentration Response Concentration Response assays/chemicals ----- ACC ACC 100-100-- - AC50 - - AC50 activity - Top of Curve - Top of Curve - Filter on activity 80-80-60-60call, AC50 per 40-40 20-100µ 0.001 100 0.01 0.1 10 0.01 Concentration (uM) Concentration (uM)

PBPK tool allows users to calculate internal chemical concentrations using PBPK models from the EPA httk R package and in-house code

 Tissue level concentrations
 View individual chemical curves

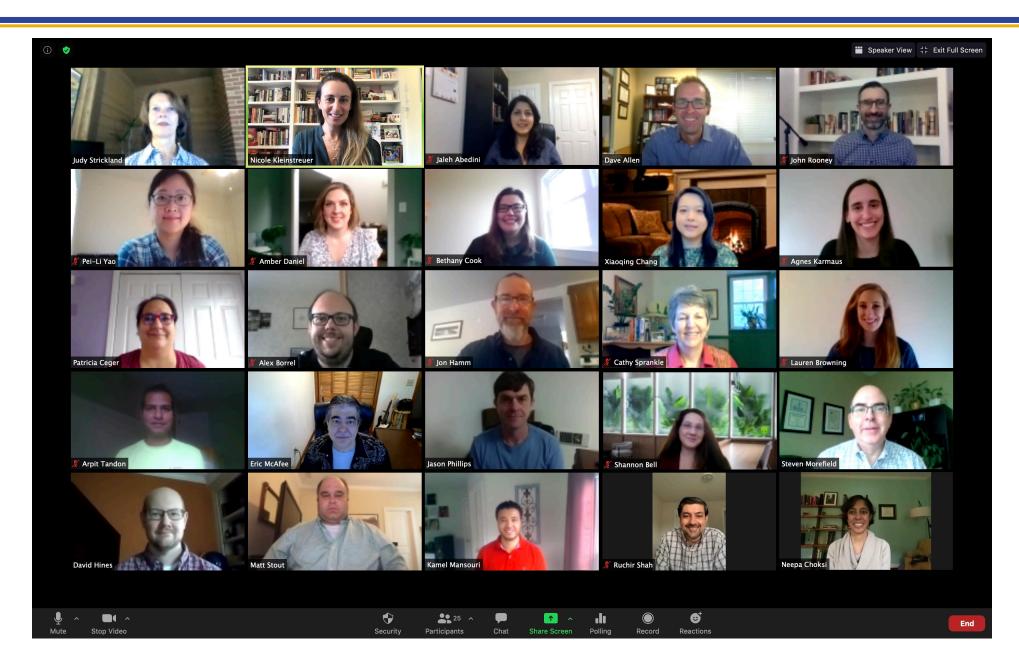
 View overall
 distribution in different
 tissue compartments
 for all query chemicals




65	Integrated Chemical Environment		HOME SEARCH TOOLS DATA - ABOUT - HELP -								
			Curve Surfer	РВРК	IVIVE	Chemical Characterization					
	Input Results $\int_{-\infty}^{\infty} \frac{Doe}{ct_r+ct}$	The IVIVE tool us	es pharmacokinetic model	s to predict the equivale	ent administered dose	e (EAD) from the activity con	centration of	f selected assay	s.		
	Report an Issue										

Chemical ≑	CASRN 💠	DTXSID \$	Flag ≑	Assay 💠	Mode of Action	Mechanistic Targets 💠	AC50 uM 💠	EAD 50th Percentile (mg/kg/day)	♦ Clint ♦	Fraction Unbound 🍦
Y	T	Y	T	Y	estrog				Y	T
					Receptor Mediated Effects			Annotation		
Testosterone	58-22-0	DTXSID8022371		TOX21_ERa_BLA_Agon	Estrogen Modulation,Gene Expression Regulation,KCC8: Receptor Mediated Effects	Estrogen Metabolic Process	13.	provided for filtering		0.39952
					Estrogen					

Transparency and annotation to help guide use and interpretation


Acknowledgments: The NICEATM Group

27

Acknowledgments: The NICEATM Group

28

Questions?