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WHY USE ORGANS-ON-A-CHIP?

Problem

— Establishing a physiologically relevant biomimetic human model that
will accurately, reliably, timely, and economically represent human
organ-organ interactions. Historically this work has been performed
in traditional tissue culture and animal models which can be time
consuming, costly, and lack physiological accuracy and precision.

Solution

— Micro-physiological systems (MPS) technology offers a high
throughput process that offers advantages over both conventional in
vitro and animal modeling in certain applications by supplying
cutting-edge Organs-on-a-chip (OOC) that imitate human tissue-
tissue interfaces, chemical and mechanical microenvironments
specific to living human organs.

Goal

— Provide an ideal alternative and/or replacement to traditional tissue
culture and animal models for a “human surrogate” toxicity and
efficacy testing.
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Solution
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WHY USE ORGANS-ON-A-CHIP?

Problem MicroPhysiological Systems

— Establishing a physiologically relevant biomimetic human model that
will accurately, reliably, timely, and economically represent human
organ-organ interactions. Historically this work has been performed
in traditional tissue culture and animal models which can be time
consuming, costly, and lack physiological accuracy and precision.

Solution ¢

— Micro-physiological systems (MPS) technology offers a high
throughput process that offers advantages over both conventional in
vitro and animal modeling in certain applications by supplying
cutting-edge Organs-on-a-chip (OOC) that imitate human tissue-
tissue interfaces, chemical and mechanical microenvironments
specific to living human organs.

Goal

— Provide an ideal alternative and/or replacement to traditional tissue
culture and animal models for a “human surrogate” toxicity and
efficacy testing.
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WHY USE ORGANS-ON-A-CHIP?
Problem
— Establishing a physiologically relevant biomimetic human model that Human Surrogate

will accurately, reliably, timely, and economically represent human
organ-organ interactions. Historically this work has been performed
in traditional tissue culture and animal models which can be time
consuming, costly, and lack physiological accuracy and precision.

Solution

— Micro-physiological systems (MPS) technology offers a high
throughput process that offers advantages over both conventional in
vitro and animal modeling in certain applications by supplying
cutting-edge Organs-on-a-chip (OOC) that imitate human tissue-
tissue interfaces, chemical and mechanical microenvironments
specific to living human organs.

Goal ¢

— Provide an ideal alternative and/or replacement to traditional tissue
culture and animal models for a “human surrogate” toxicity and
efficacy testing.
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'A‘ FUNCTIONAL SYSTEMS FOR PREDICTIVE DEvVCOM

(s TOXICOLOGY AT THREAT AGENT SCIENCE

VX Effects of Beating Cardiomyocytes

.....

- 1mg/ml
0.5mg/mL

- Operational =~ i
— Cardiac (RTCA, organoids) “ -
— Liver (2D, 3D, MPS)

() me/m
mM APAP 50mM APAP

Smoke, Aerosol,

_ CNS (ZD) ool Liquid, Gas

— Blood-Brain-Barrier (TW) ?:.':.:\

—Lung (2D, 3D) | (

—Dermal (3D) S
Medium{y '

—Lung (MPS)
— Kidney (MPS)

Culture Medium is fed throu,

* In Development
— CNS (3D organoids)
—BBB (MPS)

Kuppfer
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CURRENT ORGAN-ON-A-CHIP DESIGNS
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Human organs-on-chips for disease modelling, drug development and personalized medicine, Don Ingber.
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CURRENT ORGAN-ON-A-CHIP DESIGNS
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Figure 3. LC12 plate showing the scaffold and incubation media flow direction.
A TN BIO 1 HNOY AT OMN

Up-flow Direction

]
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Reservoir
Chamber

Scaffold Reservoir chamber

Down-flow Direction

...... 4 | <

Scaffold

Figure 1+. The PhysioMimix OOC microphysiological system. The controller supplies the pneumatic pressure and
acts as a center for commands. The dock is where the system sits inside the incubator, delivering the pneumatic
pressure. The drivers and plates are the mobile parts of the system where the cell culture takes place. Taken from
CN-Bio IFU PhysioMimix System 000264
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TissUse Chip3+:

» Size of a standard microscope
slide, suitable for iPSC-derived
cells, primary cells, 3D tissues
and cell lines. 3 organ systems
on 1 chip.

+ Uses on-chip micro-pump
enabling pulsatile flow.

Current Effort:
« Expose lung, skin, and heart to 3 o
biological and 3 chemical agents. et Tl MMl

Lyse and analyze . Protein and . . .
) . Organ-on-a-Chip Metabolite LC/MS/MS Bioinformatic
protein/metabolites after early o e Acquisition identification

exposure to identify physiological
biomarkers for wearables.

Analyses:
Proteomics/Transcriptomics — Intact proteoform and transcriptome analysis, Intelligent
instrument acquisition, enriched data dependent acquisition, high-throughput/highly
reproducible sample preparation techniques
Metabolomics — Machine learning driven feature detection, global metabolite system
perturbation analysis, broad screening based on multiple chemometric profiles.
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EMULATE ORGANS-ON-CHIPS

BRAIN-CHIP

SHEIN-CHIP

INTESTINE-CHIR
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4.
0.
B.

EMULATE S1 CHIP OVERVIEW

Epithelial Channel
Human Epithelial Cells
Vacuum Channel
Membrane

Human Endothelial Cells
Endothelial Channel
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/N EMULATE ZOE

G

emulate

e 1Zoé supports up tol2 Organ-Chips.

* Automated flow of cell culture medium, which is set
to a physiologically relevant rate.

* Option for mechanical stretch to recreate the forces a
human organ would experience.

Emulate Inc.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
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CHEMICAL BIOLOGICAL
CENTER

* One Orb can power up to 4 Zoés

* The Orb provides gas, air and power required by
Zoé to maintain flow, appropriate gas mixture and
stretch to the chips.

*  Monitors the system and makes user aware of
issues if they arise.

Emulate Inc.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 15
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CENTER

Effects of VX on Hepatic Function using Global Multiomic Analysis

BRAIN-CHIP

LUNG-CHIP i THROMBOSIS-CHID
\ s ) >

B A
LIVER-CHIP ' 5
& |

S J /
BIDNEY-CHIP INTESTINE-CHIP
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Co-culture

Hepatocytes + Liver Sinusoidal
Endothelial Cells (LSECs)

Membrane
Endothelial cell

Hepatocytes

ECM |

Tri-culture g2 288&828

Hepatocytes + LSECs
+ Kupffer cells

Quiescent
HSC

Endothelial l
Cell Kupffer

Kupffer cell

Hepatocytes

ECM |

Cell Quad-culture g2 888&828

Hepatocytes + LSECs

Hepatic Sinusoid

J Clin Invest. 2007 + Kupffer cells + Stellate cells
Cell Type Number of Cells/Chip
Hepatocyte 75,000
LSEC 60,000
Kuppfer 2,000

Stellate 10,000 .



7N METABOLOMIC AND PROTEOMIC VX
- ANALYSIS IN LIVER [Eveom

Samples were acquired utilizing four instrument methods
for maximum coverage of identified features

— Hilic and Reverse Phase Chromatography both in /
Positive and Negative Polarity with Data \

Group
I Amines
. Amino acids and peptides
B Benzamides
¥ Benzenes
B Benzoic acids
Cholines
B FattyAcids and Conjugates
B Monosaccharides
. Organic dicarboxylic acids
. QOrganonitrogen compounds

Dependent Acquisition (MS2)

— Raw data were Searched in Thermo Fisher ol
Scientific’'s Compound Discoverer 3.2 S

Short-chain acids and derivatives

— ldentified features were then subset by requiring
the delta mass to be between 5 ppm, Full Match
annotation in at least 3 sources and feature name Enrichment Overview (top 25)
for highest quality identification

g o e m =T ™ m ‘ T T ) Arglnlne and proI!ne metabolfsm
] I —] Glycine, serine and threonine metabolism
& ey — me om om ’Jr
— — 26 09 44 r’%‘Tﬁ beta-Alanine metabolism
- N

Day Arginine biosynthesis

Exposure Concentrations Pantothenate and CoA biosynthesis
Histidine metabolism

Phenylalanine, tyrosine and tryptophan...
Alanine, aspartate and glutamate metabolism
Glutathione metabolism

Phenylalanine metabolism

Nitrogen metabolism

Cysteine and methionine metabolism
Thiamine metabolism

Lysine degradation

Taurine and hypotaurine metabolism
Pyrimidine metabolism

Nicotinate and nicotinamide metabolism

Aminoacyl-tRNA biosynthesis
Valine, leucine and isoleucine biosynthesis

P value
— 2e-04

4e-01

— 7e-01

Day Exposure Concentrations Glyoxylate and dicarboxylate metabolism

25 UM Phosphonate and phosphinate metabolism

Mo [l 0w Moo [Wosw om0 Pontose phosphats pathway

Mo [ o7 Moo oz [resw [z Butanoate metabolism

Purine metabolism

j DDDDDDDIIIIHI“HHHHHUHHHH

o
N
IS
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AN METABOLOMIC AND PROTEOMIC
' é DYSFUNCTION N DEvCOM

Inhibition of Choline Conversion to
Phosphocholine Consistent with VX MOA

Choline Phosphocholine
) 104
1.05 |
X I | a=—E
| 80 -
0.8 }
8, 4 8o
g | g
0.6] _
05' 40: - P=Q
| | - S
0.4 { \
; ZQ ’\,_\n
0.3] ‘ =
s _ ' == . . . .
2 - N 04 Recent literature regarding mechanism of action of
>4 = B . . . .
& Q Q g Z 2 2 E VX indicates direct impacts on the TCA cycle.
B < 8 8 Q g 3

Performing a network analysis detailed an
interconnection of the significantly changing (pval
<= 0.5) proteins, centered on glyceraldehyde-3-
phosphate dehydrogenase (boxed in red), an
integral member in the glycolysis pathway
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HALLMARK OXIDATIVE PHOSPHORYLATION

HALLMARK INFLAMMATORY RESPONSE

HALLMARK GLYCOLYSIS
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.0990 .510
0.103 .468
0.105 .387

RNASEQ INDICATES ENERGETIC,
INFLAMMATORY AND METABOLIC
DYSREGULATION
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CENTER

Filling in Human Health Data Gaps for PFAS
Exposure in Liver and Kidney

BRAIN-CHIP

ﬁﬁ)
LUNG-CHIP i THROMBOSIS-CHID
\ s ) >

B A
LIVER-CHIP ' 5
& |

R ' { it ‘.:“ {
S 94X W&
‘1" . /&
BIONEY-CHIP INTESTINE-CHIP
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. RENAL PROXIMAL TUBULE CHIP Et’svcaM

« Top layer of chip consists of
human renal proximal tubule
| epithelial cells.
* Approximately 50,000
/ cells/chip.

« Bottom layer of chip consists
of human renal
microvascular endothelial
cells.

« Approximately 40,000
cells/chip.

Images obtained from Emulatebio.com APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 22
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PFAS RETENTION IN MEDIUM EFFLUENT Eévcam
m

PFOS Liver PFHxS Liver

Liver: Both compounds were

£ 401 detected via LC/MS dose
S 30- dependently, also increasing
e 20 over time.

More PFOS was detected than
PFHxS, although PFOS was not

5% 2% 2% % % & 2 S detected up to highest
& TS & S :
RO C S I concentration.
& TV G 0TV B e P Kidney: More PFHxS was
detected in kidney effluent (up to
: 100% at 10 ug/mL), however,
PFOS Kidney PFHxS Kidney ° 9 . )
0 there was a significant amount
- 100
— 90- of PFOS detected after 6 hours.
50 .
> o = These data deviate from the
g% $ oo other exposures where
807 = g o compound detection increased
w2 20 R 301 overtime.
104 20+
10
I_I | o | 0 T

< IR
-] -] -] © © © ™ 3 ™ > ] i) © © o > |3
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. PFAS RETENTION IN CELL LYSATE DEvCOM

% Recovery

110
100
90
80=
70—
60-
50=
40
30—
20

10=

PFHxS _ PFOS
Kidney
50—
Kidney
40—
-
Liver 2 30- Liver
o
& 20-
=X
10+
T T T T T 0-
& & & & & & & v Vv & v v
S © © & © ® ) & & S & o
,\Q ‘}Q ,\Q "l;Q ’]f" (3\} 6\3‘ ‘]:0 %\) 03\}
o NV Vv o NV Vv

Epithelium was lysed from chips and analyzed via LC/MS for PFOS or PFHxS.
Less than 1% of PFHxS was detected in liver, while up to 20% of PFOS was detected at 25
ug/mL treated chips.
100% of the PFHxS at 10 ug/mL was detected in kidney lysates, while around 40% of PFOS
retained in the 25 ug/mL treated chips.
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Uric Acid Concentration (nmol/mL)

ROS/RNS (nM)

o
T

H
T

w
T

N
T

-
o
|

350001
30000
25000
20000
15000

10000

Liver

Kidney

150

100

a
T

Kidney

100001

PFOS 6.25 ug/mL 9000-]
PFOS 12.5 ug/mL
PFOS 25 ug/mL

PFHXS 5 ug/mL

PFHXS 10 ug/mL
PFHXS 20 ug/mL 6000+
Control

8000

7000

et kot
ROS/RNS (nM)

PFOS/PFHXS AFFECTS PRODUCTION OF URIC
ACID AND ROS/RNS

Z DEVCOM

Hyperuricemia, seen in
the highest
concentration of
PFHXxS tested in
kidney chips, can
cause the formation of
urate, resulting in gout
or kidney stones.

A significant decrease
in ROS/RNS was
observed at 6 hours
post exposure with
both compounds in
liver chips compared
to the untreated
control.

PFOS 6.25 ug/mL
PFOS 12.5 ug/mL
PFOS 25 ug/mL
PFHXS 5 ug/mL
PFHXS 10 ug/mL
PFHXS 20 ug/mL
Control

o4 kb moe

5000 T T T T T T T T T T

0 10
Hours
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CHEMICAL BIOLOGICAL
CENTER

|dentifying the Effects of SARS-CoV-2 in
Lung Chip Models

BRAIN-CHIP

ﬁﬁ)
LUNG-CHIP i THROMBOSIS-CHID
\ s ) >

-
LIVER-CHIP Y . 4
- )

‘1" . /&
BIDNEY-CHIP INTESTINE-CHIP
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75 SARS-COV-2 INFECTION OF LUNG E,’_:w_-m,,

ALVEOLUS AND SMALL AIRWAY MPS

Reproduce viral entry, replication and release in
] { a human differentiated primary alveolar model

.00
> %

. Real-time monitoring following infection and
. assessment of variables such as infectious dose

Mechanistic inquiry using multi-omics

Provide additional targets for prophylaxis,
intervention and anti viral drug design

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

27



LUNG CHIP DEVELOPMENT —
b

* Deliverables:

« Both lung systems are
developed and were assessed
for appropriate cell types.

» Infections in BSL3 complete,
testing multiple infection

concentrations and infection

durations.

PECAM1

Analyses:

Proteomics/Transcriptomics — Intact proteoform and transcriptome analysis, Intelligent instrument
acquisition, enriched data dependent acquisition, high-throughput/highly reproducible sample
preparation techniques

Metabolomics — Machine learning driven feature detection, global metabolite system perturbation
analysis, broad screening based on multiple chemometric profiles.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 28



) ¢ SARS-CoV-2 PROTEOMICS DATA
(u.s.Army))

4180 high confident proteins identified
— Filtered for > 1 PSM and > 0 Unique peptides

Comparison:
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N DYSREGULATED CELLULAR PROCESSES
COMPARED TO UNINFECTED CHIPS
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LUNG INFLAMMITORY RESPONSE 7 DAY
INFECTION [BEvcam

Compliment C6 Cytokine Response
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75 LUNG TISSUE DYSREGULATION

Integrin alpha-6

a1
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-
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IGFBPs serve
as transporters s ]
for IGFs. :

Increase in IGF
can lead to "
lung fibrosis.
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Integrins are
involved in cell
growth, signaling,
proliferation,
apoptosis, and
endothelial
adhesion to ECM.

Insulin-like growth factor binding protein
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PECAM-1 EXPRESSION ENDOTHELIAL E,’EVCDM
LAYER

Uninfected SARS-CoV-2 Infected

« Thacker V.V. et al, 2020, found that SARS-CoV-2 infections in lung
chips resulted in endothelialitis and vascular damage.
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ALVEOLUS DAY 7 POST INFECTION
ENRICHMENT MAPPING (100 TCID50)

hsa01100 Metabolic pathways 1521 57 109
h=a05022 Pathways of neurodeqeneration 473 18 34
hsa05020 Prion disease 272 13 1.9
hsa05016 Huntington disease 308 12 2.2
hsa05014 Amyotrophic lateral sclerosis 364 13 2.6
hsa03010 Alzheimer disease 381 13 2.7
hsa01240 Biosynthesis of cofactors 150 8 11
hsa00230 Purine metabolism 125 ¥ 0.9
hsa05418 Fluid shear stress and atherosclerosis 134 T 1
hsal5146 Amoebiasis 100 ] 0.7
hsa04217 Necroptosis 149 T 11
hsa05415 Diabetic cardiomyopathy 202 8 14 5.52 0.000116
hsa03205 Prateoglycans in cancer 203 8 15 3.5 0.00012
hsa05012 Parkinson disease 268 a 0.000154
hsa00730 Thiamine metabolism 15 3 0.000156
hsa01230 Biosynthesis of aminc acids 73 5 0.000186
hsa05208 Chemical carcinogenesis 224 8 0.000235
hsa00970 Aminoacyl-tRNA biosynthesis 44 4 0.000282
hsa00520 Amino sugar and nuclectide sugar metabelism 49 4 0.000427
hsa05200 Pathways in cancer 530 12 0.000515
h=a05017 Spinccerebellar ataxia 140 ] 0.000547
hsa00480 Glutathione metabolism 58 4 0.000813
hsa00310 Lysine degradation &0 4 0.000924
hsa04218 Cellular senescence 159 ] 0.00106
hsa04010 MAPK signaling pathway 294 8 0.00129
hsa00740 Riboflavin metabolism 8 2 0.0014
hsa01200 Carbon metabalism 115 5 0.00149
hsa05171 Coronavirus disease 232 7 0.00133
h=a00051 Fructose and mannose metabolism 32 3 0.00155
hsal4611 Platelet activation 126 5 0.00222
hsa04915 Estrogen signaling pathway 133 5 0.00281
hsa05130 Pathogenic Escherichia celi infection 195 6 0.00297
hsa00380 Trvotoohan metabolism 41 3 0.3 0.00319
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a§ [ MINI-BRAIN INFECTION OMICS ANALYSIS /52,0,
=m

Infectability of Human BrainSphere Neurons
Suggests Neurotropism of SARS-CoV-2

C. Korin Bullen®!, Helena T. Hogberg=?, Asli Bahadirli-Talbort!, William R. Bishai!, Thomas Hartung?3.4,
Casey Keuthan®, Monika M. Looney!, Andrew Pekosz4, J. Carolina Romero?, Fenna C. M. Sillé2.6, Peter Um!

and Lena SmirnovaZ.#

Tohns Hopkins University, School of Medicine, Department of Medicine, Division of Infectious Diseases, Baltimore, MD, USA; Tohas Hopkins
University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA; *CAAT-Europe, University of
Konstanz, Konstanz, Germany; 4Johns Hoplins University, Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology,

¥ SARS-CoV-2

N Mock
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' E'EVCDM
AEROSOL DELIVERY TO LUNG-CHIP

SLA/_DLP 3D-Printed Parts Aerosol Aerosol Amendable Open-
3D- Printers Generating/Delivery System Top Lung-Chips

—

Z

Top of Chip

Monochrome LCD

\@

Bottom of Chip

/

Lid for Chip

Nose-Cone Aerosol System

Micro SLA ‘
ere Nose-Cone Direct-impact Chamber Membrane
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