INVESTIGATING DNA ADDUCT FORMATION BY FLAVOR CHEMICALS AND TOBACCO BYPRODUCT IN E-CIGARETTES USING IN SILICO APPROACHES

Jueichuan (Connie) Kang, MS, PhD Supervisory Team Lead Division of Nonclinical Science Center for Tobacco Products, FDA Lieutenant US Public Health Service Commissioned Corps

Disclaimer: This is not a formal dissemination of information by FDA and does not represent Agency position or policy.

CENTER FOR TOBACCO PRODUCTS

May 26, 2022

DISCLAIMERS

This presentation is not a formal dissemination of information by Center for Tobacco Products (CTP), FDA, and does not represent Agency position or policy

ANATOMY OF E-CIGARETTES

BACKGROUND

- E-cigarettes surging popularity e.g., sleek designs, marketing, social media, and *Flavors* (80% youth e-cig users, National Youth Tobacco Survey, 2020)
- Flavors banned in refillable e-cigs in January 2020, but available in disposable e-cigs.
- E-liquid can react during mixing and storage at room temp. (Erythropel et al., 2018).
- Efficient transfer of flavor chemicals (e.g., cinnamaldehyde) from e-liquid into aerosol (Noel et al., 2018)
- Thermal degradation of e-liquid: propylene glycol (PG), vegetable glycerin (VG), and flavors are shown to generate acrolein, methylglyoxal, etc.

- Some flavor chemicals and tobacco byproducts are found to induce DNA adducts: estragole, eugenol, cinnamaldehyde, methylglyoxal, etc. (*Zhou et al., 2007; Sakano et al., 2004; Kiwamoto et al., 2016; Frischmann et al., 2005*)
- Formed from electrophilic chemicals or chemicals that can be metabolic activated to become electrophiles, which then covalently bind to DNA or/and proteins
- DNA adducts \rightarrow DNA damage \rightarrow Carcinogenesis?
- DNA adducts levels are associated with cancer risk (*Poirier, 2016; Hemminki et al., 2000*)

IARC MONOGRAPH **TEN KEY CHARACTERISTICS OF CARCINOGENS**

Review

Key characteristics of carcinogens.

Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis

Martyn T. Smith,¹ Kathryn Z. Guyton,² Catherine F. Gibbons,³ Jason M. Fritz,³ Christopher J. Portier,⁴* Ivan Rusyn,⁵ David M. DeMarini,³ Jane C. Caldwell,³ Robert J. Kavlock,³ Paul F. Lambert,⁶ Stephen S. Hecht,⁷ John R. Bucher,⁸ Bernard W. Stewart,⁹ Robert A. Baan,² Vincent J. Cogliano,³ and Kurt Straif²

¹Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA; ²International Agency for Research on Cancer, Lyon, France, ³Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA, and Research Triangle Park, North Carolina, USA; ⁴Environmental Defense Fund, Washington, DC; ⁵Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA; ⁶McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; ⁷Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; ⁸National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA; ⁹Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia

Characteristic	Examples of relevant evidence
1. Is electrophilic or can be metabolically activated	Parent compound or metabolite with an electrophilic structure (e.g., epoxide, quinone), formation of DNA and protein adducts
2. Is genotoxic	DNA damage (DNA strand breaks, DNA-protein cross-links, unscheduled DNA synthesis), intercalation, gene mutations, cytogenetic changes (e.g., chromosome aberrations, micronuclei)
3. Alters DNA repair or causes genomic instability	Alterations of DNA replication or repair (e.g., topoisomerase II, base- excision or double-strand break repair)
4. Induces epigenetic alterations	DNA methylation, histone modification, microRNA expression
5. Induces oxidative stress	Oxygen radicals, oxidative stress, oxidative damage to macromolecules (e.g., DNA, lipids)

D)

CENTER FOR TOBACCO PRODUCTS

ALKENYLBENZENES

Kang & Valerio, 2020

Chemical Name	CASRN	DNA Adduct Citations	Structures	Similarity Metric to Safrole
Safrole	94-59-7	Munerato et al., 2005; Zhou et al., 2007; Kobet et al., 2016		1.0000
Methyleugenol	93-15-2	Kobet et al., 2016; Tremmel 2017; Kobet et al., 2018		0.9067
Estragole	140-67-0	Zhou et al., 2007; Kobet et al., 2016; Schulte-Hubbert et al., 2019		0.7886
Elemicin	487-11-6	Phillips et al., 1984; Kobet et al., 2016		0.7809
Myristicin	607-91-0	Phillips et al., 1984; Randerath et al., 1993; Zhou et al., 2007; Kobet et al., 2016		0.8316

7 Investigating DNA adduct formation using in silico approaches, May 26, 2022

CENTER FOR TOBACCO PRODUCTS

ALKENYLBENZENES

Kang & Valerio, 2020

Chemical Name	CASRN	DNA Adduct Citations	Structures	Similarity Metric to Safrole
trans-Anethole (Anise camphor)	4180-23-8	Kobet et al., 2016; Fuhbrueck et al., 2018		0.6614
cis-Anethole	25679-28-1	Fuhbrueck et al., 2018		0.6614
Eugenol	97-53-0	Sakano et al., 2004; Munerato et al., 2005	HO O	0.8790
Apiol	523-80-8	Phillips et al., 1984; Zhou et al., 2007		0.7185
Dillapiole	8025-95-4 (484-31-1)	Phillips et al., 1984; Zhou et al., 2007		0.7610

8 Investigating DNA adduct formation using in silico approaches, May 26, 2022

CENTER FOR TOBACCO PRODUCTS

FLAVOR COMPOUNDS WITH SIMILAR STRUCTURES TO SAFROLE ¹

Chemical Name	CASRN	DNA Adduct Citations	Structures	Similarity Metric to Safrole
Methyl-isoeugenol	93-16-3	NA		0.789505
Isoeugenol	97-54-1	NA	HO	0.759281
4-ethylanisole (1-ethyl-4- methoxybenzene)	1515-95-3	NA		0.720409

¹ Identified by Vitic V3.0 and ChemTunes V1.2

TOBACCO OR/AND FLAVOR-RELATED ALDEHYDES

Chemical Name	CASRN	DNA Adduct Citations	Structures	Similarity Matrix to Acrolein
Acrolein (2- propenal)	107-02-8	Lee et al., 2015; Kiwamoto et al., 2015		1.0000
Glyoxal	107-22-2	Vilanova et al. 2017		0.9786
Methylglyoxal; Pyruvaldehyde	78-98-8	Frischmann et al., 2005		0.9120
trans-2-hexenal (HEX); Hex-2(trans)- enal	6728-26-3	Schuler and Eder 1999; Stout et al., 2008		0.9050
Hexanal (Caproic aldehyde)	66-25-1	Gölzer et al., 1996;		0.8757

TOBACCO OR/AND FLAVOR RELATED ALDEHYDES

Chemical Name	CASRN	DNA Adduct Citations	Structures	Similarity Matrix to Acrolein
<i>trans</i> -Cinnamaldehyde; (2E)-3-phenylprop-2- enal	14371-10-9	Kiwamoto et al., 2016		0.8235
Bourgeonal; 3-(4-tert- butylphenyl) propanal (BDHCA)	18127-01-0	Kobet et al., 2018		0.7099
Flavor Compounds with Similar Structures to Acrolein				
4- methylcinnamaldehyde				
Benzalacetone (Benzylideneacetone)	122-57-6	N/A		0.6948

11 Investigating DNA adduct formation using in silico approaches, May 26, 2022

CENTER FOR TOBACCO PRODUCTS

IN SILICO TOXICOLOGY SOFTWARE/MODELS AND ENDPOINTS

Toxicity Endpoints	In silico Software
Bacterial mutagenicity (AMES)	CaseUltra, Sarah Nexus, Derek Nexus, ChemTunes-ToxGPS
Mammalian mutagenicity	CaseUltra
Chromosome damage (mammal)	Derek Nexus, CaseUltra
Micronuclei formation	CaseUltra, Chem-Tune - ToxGPS
Unscheduled DNA synthesis in vitro (mammal)	Derek Nexus
Rodent carcinogenicity	CaseUltra, Derek Nexus, ToxGPS
Skin Sensitization	CaseUltra, Derek Nexus, ToxGPS

CONCORDANCE BETWEEN DNA ADDUCT FORMATION AND VARIOUS IN SILICO TOX PREDICTIONS

CASE Ultra GT1 BMUT V1.7 CASE Ultra GT Expert V1.7 Derek Nexus 2.2 Muta. in vitro (Bac) Sarah Nexus 3.0 Muta. in vitro ToxGPS Bac. Reverse Muta. CASE Ultra GT4_L5178Y V1.6 (Mouse Lymph. Assay) Derek Nexus 2.2 (Unscheduled DNA Synthesis) ToxGPS in vitro Chromosomal Aberration CASE Ultra GT3 MNT MOUSE V1.6 Derek Nexus 2.2 Carci, Mammal CASE Ultra CARC MOUSE F V1.6 CASE Ultra CARC MOUSE M V1.6 CASE Ultra CARC RAT F V1.6 CASE Ultra CARC RAT M V1.6 **ToxGPS Mouse Tumor ToxGPS Rat Tumor**

Concordance of Model Predictions and DNA Adduct Formation in Alkenylbenzenes

Concordance of Model Predictions and DNA Adduct Formation in Aldehydes

CONCORDANCE BETWEEN DNA ADDUCT FORMATION AND VARIOUS IN SILICO TOX PREDICTIONS

Concordance of Model Predictions and DNA Adduct Formation in Alkenylbenzenes

Concordance of Model Predictions and DNA Adduct Formation in Aldehydes

L5178Y (in vitro mouse lymphoma assays, CASEUltra)

- 100% concordance with DNA adduct formation in both chemical classes
- L5178Y widely used for regulatory genotoxicity test
 - ICH S2B guidelines (Muller et al., 1999; ICH, 1997)
 - OECD for testing of chemical. TG 490 (OECD, 2016)
 - Detects thymidine kinase (tk) locus of L5178Y cells (tk +/- → tk -/-) including point mutation, deletion, chromosomal rearrangements, and translocation, etc.
 - Signal events that are resulted from DNA damage caused by DNA adduct formation

FD/

CONCORDANCE BETWEEN DNA ADDUCT FORMATION AND SKIN SENSITIZATION PREDICTIONS

Concordenc of Model Prediction and DNA adduct Formation in Alkenylbenzenes

Concordenc of Model Prediction and DNA adduct Formation in Aldehydes

ADVERSE OUTCOME PATHWAY (AOP) SKIN SENSITIZATION

17 Investigating DNA adduct formation using in silico approaches, May 26, 2022

CENTER FOR TOBACCO PRODUCTS

Skin Sensitization

- Both chemical classes produce high concordance with predictions for skin sensitization, with 90-100% in several models
- Corresponding to 4 key events (KEs) in skin sensitization Adverse Outcome Pathways (AOP)
- Aldehydes are known skin sensitizers, e.g., cinnamaldehyde
- Very few alkenylbenzenes are confirmed skin sensitizers, e.g., isoeugenol
- MOA *Electrophilic Reactive intermediates* that can form *covalent bonds* with proteins (skin sensitization) and DNA (DNA adducts)

FD/

MAJOR DIFFERENCES IN PREDICTION ENDPOINTS

Concordance of Model Predictions and DNA Adduct Formation in Alkenylbenzenes

Concordance of Model Predictions and DNA Adduct Formation in Aldehydes

MAJOR DIFFERENCES IN PREDICTION ENDPOINTS

Concordance of Model Predictions and DNA Adduct Formation in Alkenylbenzenes

Concordance of Model Predictions and DNA Adduct Formation in Aldehydes

MAJOR DIFFERENCES BETWEEN TWO CHEMICAL CLASSES

Bacterial Mutagenicity

- CaseUltra, ToxGPS, Derek and Sarah Nexus
- Alkenylbenzenes
 - Mostly negative
 - <u>Require bioactivation</u> to form electrophilic intermediates
 - Bacterial assays (AMES) may not contain necessary enzymes for biotransformation
- Aldehydes
 - High rates of positive results
 - Direct acting do not require bioactivation

MAJOR DIFFERENCES BETWEEN TWO CHEMICAL CLASSES

Non-specific genotoxicity - Derek Nexus

- Unscheduled DNA Synthesis (UDS)
- Alkenylbenzenes (70%) vs. Aldehydes (29%)

Aldehydes

- Inhibit DNA repairs, including nucleotide excision repair (NER), base excision repair (BER), and mismatch repair proteins
- Bind to DNA repair protein and lead to protein degradation
- Multi-faceted reactions of aldehyde toward both DNA and proteins lead to increased chemical insults to normal cellular functions

OVERALL SUMMARY AND CONCLUSION

- Identify in vitro mouse lymphoma assays (L5178Y) that may correlate with DNA adduct formation
- Identify areas that have increased confidence by comparing multiple prediction software and endpoints to *in vitro* and *in vivo* data
 - Bacterial mutagenicity sensitivity, specific, and consensus in multiple software, ToxGPS, Derek Nexus, CaseUltra
 - Skin sensitization widely available and validated
- Proof of concept in silico tox can be utilized in tobacco product ingredient research to increase knowledge of potential toxicity and assist in prioritizing additional analysis and testing

STUDY LIMITATION

- Small number of chemicals studied
- In silico limitations: model transparency, data quality is critical for generating good predictions
- Biological relevance and implications for DNA adduct formation?
 - Hard to capture downstream carcinogenicity effects
 - DNA repair, oxidative stress, chronic inflammation, etc. (Smith et al., 2016)
 - Polymorphism in many xenobiotic-metabolizing enzymes, DNA repair, etc.
- In silico software used in this study does not factor exposure or specific exposure regarding inhalation route

 \mathbf{F}

STUDY STRENGTH – OVERALL

- Moving toward 3 Rs Reduce, Refine, and Replace animal testing
 - FDA Predictive Toxicology Roadmap (FDA 2017)
- Highlight and recapitulate mechanistic aspects of chemical safety
 assessment
- Highlight the importance of looking beyond bacterial mutagenicity assay, or other genotoxicity assays (Ames, Chromosomal aberration, Micronucleus, etc.)
 - Lack of human metabolic enzymes that are present in vitro (even with S9)

SELECTED REFERENCES

- Guyton, K.Z., Rieswijk, L., Wang, A., Chiu, W.A., Smith, M.T., 2018. Key characteristics approach to carcinogenic hazard identification. Chem. Res. Toxicol. 31 (12), 1290–1292. <u>https://doi.org/10.1021/acs.chemrestox.8b00321</u>.
- Kang, J. C., & Valerio, L. G., Jr. (2020). Investigating DNA adduct formation by flavor chemicals and tobacco byproducts in electronic nicotine delivery system (ENDS) using in silico approaches. *Toxicol Appl Pharmacol*, 398, 115026. <u>doi:10.1016/j.taap.2020.115026</u>
- Kiwamoto, R., Ploeg, D., Rietjens, I., Punt, A., 2016. Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne alpha,beta-unsaturated aldehydes predicted by physiologically based in silico modelling. Toxicology in Vitro *31*, 114–125. <u>https://doi.org/10.1016/j.tiv.2015.11.014Kosmider</u>.

SELECTED REFERENCES

- Noel, A., Verret, C.M., Hasan, F., Lomnicki, S., Morse, J., Robichaud, A., Penn, A.L., 2018. Gener ation of electronic cigarette aerosol by a third-generation machine-vaping device: application to toxicological studies. Jove-J. Vis. Exp. (138), 11. <u>https://doi.org/10.3791/58095</u>.
- Smith, M.T., Guyton, K.Z., Gibbons, C.F., Fritz, J.M., Portier, C.J., Rusyn, I., ... Straif, K., 2016. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ. Health Perspect. 124 (6), 713–721. <u>https://doi.org/10.1289/ehp.1509912</u>.
- Strickland, J., Zang, Q.D., Kleinstreuer, N., Paris, M., Lehmann, D.M., Choksi, N., ...Casey, W., 2016. Integrated decision strategies for skin sensitization hazard. Journal of Applied Toxicology 36 (9), 1150–1162. <u>https://doi.org/10.1002/jat.3281</u>
- Zhou, G.D., Moorthy, B., Bi, J., Donnelly, K.C., Randerath, K., 2007. DNA adducts from alkoxyallylbenzene herb and spice constituents in cultured human (HepG2) cells. Environ. Mol. Mutagen. 48 (9), 715–721. <u>https://doi.org/10.1002/em.20348</u>.

ACKNOWLEDGEMENT

FDA

- Luis Valerio
- Hans Rosenfeldt
- Kimberly Benson
- Zheng (Alex) Tu
- DNCS Tox Branch 1
- Prabha Kc

Questions and Comments? jueichuan.kang@fda.hhs.gov

- Suzanne Fitzpatrick
- FDA ICCVAM Reps
- Mamata De
- Reema Goel
- Nabanita Nag
- Sang Ki Park
- John Knoblach

POSSIBLE FUTURE STUDIES

- Using L5178Y assays to screen chemicals??
- Screen tobacco ingredients (e.g., flavors) for DNA adduct formation
 - Structure similarity?
 - Metabolites?
 - Thermal degradation products?

E-CIGARETTES

ALKENYLBENZENES METABOLISMS AND DNA ADDUCT FORMATION

CENTER FOR TOBACCO PRODUCTS

L5179Y MOUSE LYMPHOMA ASSAY (MLA)

WHAT ARE THESE CHEMICALS

Alkenylbenzene

• Found in herb, e.g., basil, nutmeg, dills, parsley, etc.

DNA ADDUCT AND CARCINOGENESIS

Pérez-Carreón, J., & Meléndez-Zajgla, J. (2012). In vitro and in vivo models for cancer research. *Molecular Oncology Principles and Recent Advances*, 148-162.