Collaborative Modeling Project for Predicting Acute Oral Toxicity <u>K Mansouri¹, A Karmaus¹, J Fitzpatrick^{2,3}, G Patlewicz², P Pradeep², D Allen¹, W Casey⁴, and N Kleinstreuer⁴</u> ¹ILS, RTP, NC, USA; ²EPA/CCTE, RTP, NC, USA; ³ScitoVation LLC, RTP, NC, USA; ⁴NIH/NIEHS/DNTP/NICEATM, RTP, NC, USA

Background

NTP National Toxicology Program

- Acute systemic toxicity tests are commonly required by regulatory authorities to characterize a chemical's toxicity.
- In silico models provide an alternative to traditional animal tests for predicting acute oral toxicity and bridging data gaps.
- NICEATM and the ICCVAM Acute Toxicity Workgroup (ATWG) organized an international collaborative project to develop in silico models for predicting acute oral toxicity.
- Predictions within the applicability domains of the submitted models were evaluated using external validation sets, then combined into consensus predictions for each endpoint, forming the Collaborative Acute Toxicity Modeling Suite (CATMoS).

Project Data

- Endpoints: five endpoints were selected by the ICCVAM ATWG member agencies to serve as endpoints for predictive modeling within the CATMoS project.
- Collected data: 34,508 rat oral LD50 values for 16,297 chemicals total.

15.688 chemical

structures

21,200 LD50 values

QSAR-ready standardization

Hazard -

EPA Categories

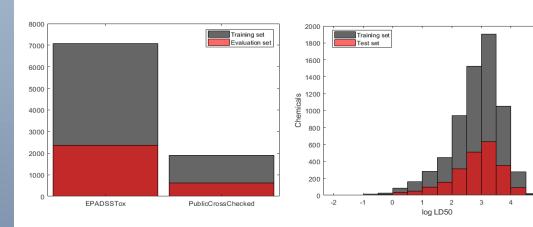
Hazard IV (>5000 mg/kg)

I (≤ 50 mg/kg)

Binary Models

Very toxic (VT) (≤50 mg/kg)

(>50-5000 mg/kg)


Toxic

+ Nontoxic (NT; >2000 mg/kg)

II (>50 ≤ 500 mg/kg)

III (>500 ≤ 5000 mg/kg)

Desalted, stereochemistry stripped, tautomers and nitro groups standardized, valence corrected, structures neutralized

Available data split into:

- 75% training set: 8,994 chemicals
- 25% evaluation set: 2,998 chemicals

Categorical Models

Packing

Group

 Training data for all endpoints included in same structure file

Continuous Model

Point estimates of

LD50 values

GHS Categories

I (>5 ≤ 50 mg/kg)

NC (> 2000 mg/kg)

III (>50 ≤ 300 mg/kg)

IV (>300 ≤ 2000 mg/kg)

11.992 chemicals with

standardized structures

(≤ 5 mg/kg)

Hazard

OSHA

Hazard

 Similar distributions and variability for values, categories, and chemical structure sources

International Consortium of Participants

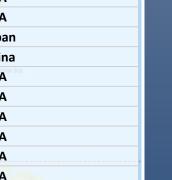
A consortium of <u>35 international participants</u> representing academia, industry, and government

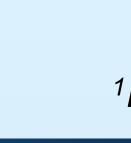
Group ID	Institution Russia Russia	Country
NICEATM Canada Hudson Bay	NTP Interagency Center for the Evaluation of Alternative Toxicological Methods	USA
UNIBARI	Università degli Studi di Bari	Italy
LOREAL	L'Oréal R&I	France
UNICAMB	University of Cambridge	UK Sea of Okhotsk
UNC (18)	UNC Eshelman School of Pharmacy	USA
FUG	Federal University of Goias France Romania Mongolia	Brazil
	University of Milano-Bicocca Haly 3	Italy
DOW	The Dow Chemical Company Spain Greece Turkey Turkey Turkey State	USA
IRCCS (5 groups)	Istituto di Ricerche Farmacologiche Mario Negri	South taly 24 Japan
MSU AZ NM MS AL SC	Michigan State University	USA
SIMPLUS	Simulations Plus, Inc.	USA
KU Gulf of	Kyoto University Graduate School of Medicine	Japan
ECUST	East China University of Science and Technology, China	China
USAFSAM	Henry M Jackson Foundation for the Advancement of Military Medicine	USA
RUT (2 groups)	an Rutgers University Burkes Chad Chad Chad Sea Bay of Bengal Vietnam Phil	USA
СОГЬНА	Collaborations Pharmaceuticals, Inc. Nigena Ethiopia	USA
UL	Underwäriters Laboratories	USA
NCSTATE	North Carolina State University	USA
PNNL	Pacific Northwest National Laboratory	USA
NCCT	National Center for Computational Toxicology, USEPA	USA Papua New Guinea
HZM	Helmholtz Zentrum München, Germany Angola Zenhia	Germany
UNISTRA	Universite de Strasbourg	France
NRMRL	National Risk Management Research Laboratory, USEPA Madagascar Indian	USA ^{NT} Coral Sea
LSINC	Leadscope Inc. Ocean	USAtatralia
NCATS	National Center for Advancing Translational Sciences, NIH	USA
ATSDR	Agency for Toxic Substances and Disease Registry, CDC	USA
ROSETTAC	Rosettastein Consulting UG	Germany
UCOL	University of Colorado	USA
DUT	Dalian University of Technology	China Magazina Sea
DOW_AGRO	Dow Agrosciences	USA Contact map own

Coverage and concordance of the models (139 models received)

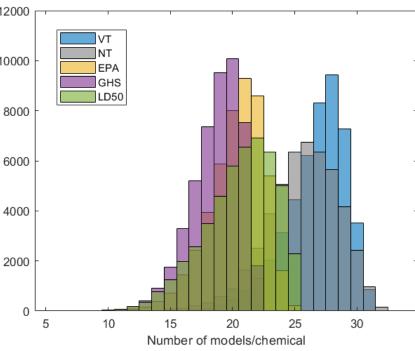
8000 6000

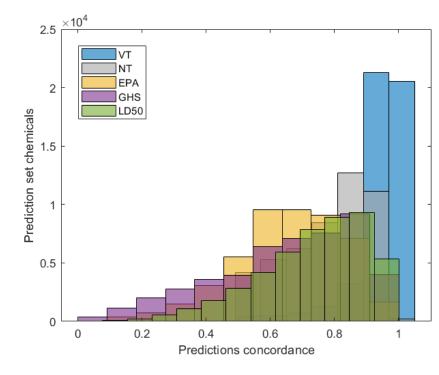
- Availability of code


 $BA = \frac{1}{2}$


Steps for combining the models into consensus

WoE approach to combine the five independent calls


Model Prediction

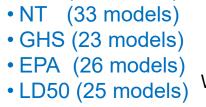


Consensus Modeling

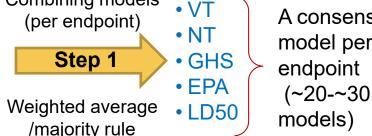
Model evaluation procedure

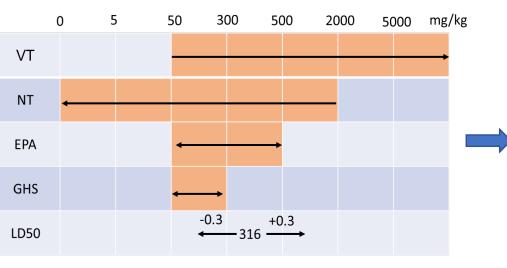
Qualitative evaluation:

- Documentation Defined endpoint Unambiguous algorithm
 - Defined applicability domain • Availability of input data
 - used for modeling
 - Mechanistic interpretation


S = 0.3 * (Goodness of fit) + 0.45 * (Predictivity) + 0.25 * (Robustness)

Categorical models (binary and multi-class):


Goodness of fit = $0.7 * (BA_{Tr}) + 0.3 * (1 - |Sn_{Tr} - Sp_{Tr}|)$ $Predictivity = 0.7 * (BA_{Eval}) + 0.3 * (1 - |Sn_{Eval} - Sp_{Eval}|)$ $Robustness = 1 - |RA_m - RA_n|$


$$(Sn + Sp) \qquad \sum_{n=1}^{N} \frac{TP}{2n} \qquad \sum_{n=1}^{N} \frac{TN}{2n}$$

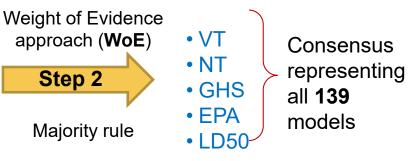
Initial models **Endpoint consensus** & predictions models/predictions Combining models • VT • VT (32 models) A consensus (per endpoint) • NT model per Step 1 • GHS

2

Variability range for LD50= +/- 0.3 (log units)

Original: independent calls

	VT	NT	EPA	GHS	LD50		
olX	0	0	2	3	<mark>316</mark>		


Quantitative evaluation:

- Goodness of fit: training (Tr) statistics
- Predictivity: Evaluation set statistics (Eval)
- Robustness: balance between (Goodness
- of fit) & (Predictivity)

Continuous models:

Goodness of fit = $R_{T_n}^2$ $Predictivity = R_{Eval}^2$ $Robustness = 1 - |R_{Tr}^2 - R_{Eval}^2|$ $R^{2} = 1 - \frac{\sum_{i=1}^{n_{TR}} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n_{TR}} (y_{i} - \hat{y}_{i})^{2}}$ is timated and $\overline{\sum_{i=1}^{n_{TR}} (y_i - \bar{y})^2}$ observed responses

Consistent consensus models/predictions

(0 5		Winning b 50 30		00 20	00 50)00 mg	g/kg
VT	0	0	1	1	1	1	1	
NT	1	1	1	1	1	0	0	
EPA	0	0	1	1		0	0	
GHS	0	0	1	0	0	0	0	
<u>LD50?</u>	0	0	1 160∢	1	1 613			
WoE	1	1	5	4	3	1	1	

Adjusted LD50: (160+300)/2=230mg/kg

WoE: consistent calls

	VT	NT	EPA	GHS	LD50
molX	0	0	2	3	<mark>230</mark>

CATMoS Performance Evaluation 0.8 R² RMSE EPA Traini Cat Cat Cat 1 2 0.87 0.87 0.83 0.91 0.99 0.95 0.75 **CATMoS in Practice** Extended consensus model * New chemical to be predicted d_i : Euclidean distance based on the selected descriptors for each endpoint **Example predictions** SEPA 1,4-Dioxane 123-91-1 | DTXSID4020533 Molecular Formula: C₄H₈O₂ Average Mass: 88.106 g/mol LD50: 4200 mg/kg https://comptox.epa.gov/dashboard/ 123-91-1 67-97-0 CATMoS implementation in OPERA OPERA suite of models: Free, open-source, and open-data Command line and GUI Single chemical and batch mode Windows OS and Linux Embeddable wrapper libraries in (java, C, C++ and Python) References

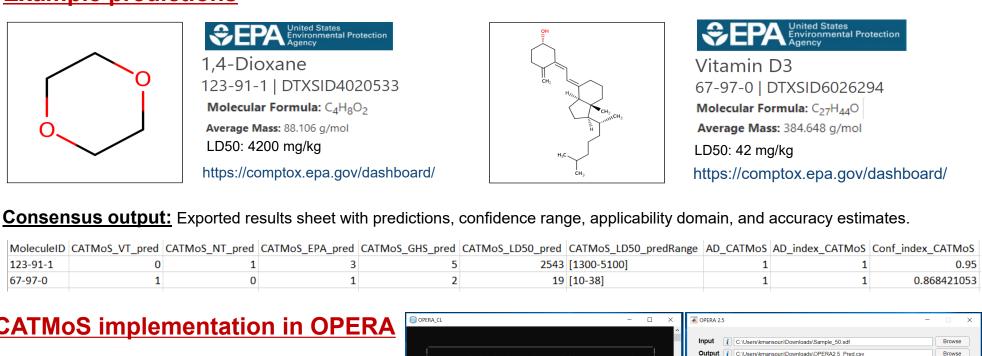
Pharmacol 94:183–196.

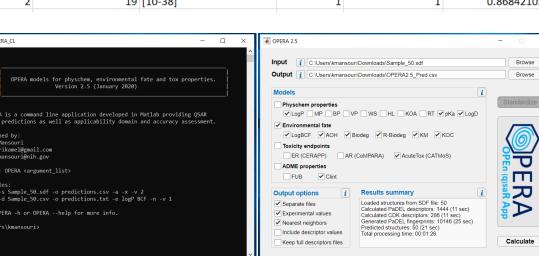
Comput Toxicol 8:21–24.

Acknowledgements

									VT				NT				
LD50									i	Traini	ng E	valuat	ion	Train	Eval	uation	
ining Evaluation					Balanced accuracy (BA)				0.93		0.84		0.92	0.78			
.85			0.65			Sen	Sensitivity (Sn)				0.87		0.70		0.88	0.67	
.30		0.49				Spe	cifici	ity (Sp)		0.99		0.97		0.97	0.90	
ng EPA Evaluation				GHS Training GH					GHS	IS Evaluation							
nt	Cat					Cat	Cat	Cat	Cat	Cat	Cat	Cat	Cat	Cat	Cat		
	4	1	2	3	4			1	2	3	4	5	1	2	3	4	5
	-	0.74 BA 0.8						0.88	38 0.74								
1	0.63	0.70	0.56		0.40		Sn	0.73	0.75	0.84	0.80	0.88	0.50	0.53	0.56	0.66	0.67
5	0.98		0.88	0.62	0.97		Sp	0.99	0.99	0.92	0.89	0.96	0.99	0.97	0.89	0.74	0.90

$$d_1 = 0$$
$$Pred_i = N_i$$


$$d_{1} \neq 0$$


$$w_{i} = f(d_{i})$$

$$Pred_{i} = f(w_{i}, N_{i})$$

Nearest neighbors (N_i)

Automated, similarity-endpoint dependent read-across: weighted kNN

Strickland et al. 2018. Status of acute systemic toxicity testing requirements and data uses by U.S. regulatory agencies. Regul Toxicol

- Predictive Models for Acute Oral Systemic Toxicity. https://ntp.niehs.nih.gov/go/tox-models. Accessed 29 Aug 2019.
- Kleinstreuer et al. 2018. Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation.
- OPERA Open structure-activity/property relationship app. https://github.com/NIEHS/OPERA. Accessed 29 Aug 2019.
- Mansouri et al. 2018. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminform 10:10. Integrated Chemical Environment (ICE). https://ice.ntp.niehs.nih.gov/. Accessed 29 Aug 2019.
- Williams et al. 2017. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform 9(1):61. https://comptox.epa.gov/dashboard/
- This project was funded in whole or in part with federal funds from the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN273201500010C.
- Disclaimer: The views expressed above do not necessarily represent the official positions of any federal agency. Since the poster was written as part of the official duties of the authors, it can be freely copied.