

|                                            | Column Header Definitions                                                                                                                   |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Header                                     | Description/Notes                                                                                                                           |
| Compound                                   | Common Compound Name                                                                                                                        |
| Therapeutic C <sub>max</sub> (µм)          | Published human therapeutic Cmax                                                                                                            |
| Negative Exposure (µM) Daston et al., 2014 | Negative Exposure Level published in Daston et al., 2014                                                                                    |
| Positive Exposure (µM) Daston et al., 2014 | Positive Exposure Level published in Daston et al., 2014                                                                                    |
| FDA Pregnancy Category                     | FDA category to indicate the potential of a drug to cause birth defects if used during pregnancy                                            |
| "Truth" Classification                     | Stemina's classification based on human or rodent data. Used for calculating accuracy of the predictions. If human data was available for a |
|                                            | compound, it was used for classification.                                                                                                   |
| Humans                                     | Published developmental toxicity potential in humans                                                                                        |
| Rodent                                     | Published developmental toxicity potential in rodents                                                                                       |
| Rabbit                                     | Published developmental toxicity potential in rabbits                                                                                       |
| Zebrafish                                  | Published developmental toxicity prediction in ZET                                                                                          |
| mEST                                       | Published developmental toxicity prediction in ECVAM validated mEST (does not include predictions made with alterations to the original     |
|                                            | protocol).                                                                                                                                  |
| WEC                                        | Published developmental toxicity prediction in WEC                                                                                          |
|                                            | Prediction of developmental toxicity was based on the Cmax for compounds with known human teratogenicity information while the 65µM         |
| hESC devTOX quick Predict                  | threshold for used to classify compounds unknown developmental toxicity or lack human exposure data                                         |
|                                            |                                                                                                                                             |
|                                            | Prediction of developmental toxicity was based on the Cmax for compounds with known human teratogenicity information while the 65uM         |
| iPSC devTOX quick Predict                  | threshold for used to classify compounds unknown developmental toxicity or lack human exposure data                                         |
|                                            |                                                                                                                                             |
| Notes                                      | Additional notes about results, etc.                                                                                                        |

# **General Notes**

n.d. = no data available or not tested/determined; DT = Developmental Toxicant; NON = Non-Developmental Toxicant; Starred (\*) compounds have additional notes (listed after table)

<sup>a</sup>Classification was based on human data when available. When human data is not available, data from rodent in vivo studies was used to classify the compounds as developmentally toxic or non-developmentally toxic. This methodology for determining teratogenicity results in higher accuracy, sensitivity and specificity in this group of compounds for the rodent model.

<sup>b</sup>Maternal toxicity was present at the concentration that had an effect on the fetus.

<sup>c</sup>Predictions for pharmaceutical compounds with known human developmental toxicity were based on human therapeutic Cmax. If no Cmax was available, predictions were based on the concentration threshold 65µM.

<sup>d</sup>If conflicting results were published for a test compound, the classification with the most references was used to determine assay accuracy. If there was an equal number of publications for each classification, the classification from the publication that evaluated more test compounds was used to determine assay accuracy. Cells are colored to indicate which classification was used for accuracy determination.

# **Stemina**

| Compound                | Therapeutic<br>Cmax (μM) | Negative<br>Exposure (μM)<br>Daston et al., 2014 | Positive<br>Exposure (μM)<br>Daston et al., 2014 | FDA Pregnancy<br>Category | "Truth"<br>Classification <sup>a</sup> | Humans  | Rodent              | Rabbit   | Zebrafish <sup>d</sup> | mEST <sup>d</sup>               | WEC <sup>d</sup>         | hESC devTOX<br>quickPredict <sup>c</sup> | iPSC devTOX<br>quickPredict <sup>c</sup> |
|-------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------|----------------------------------------|---------|---------------------|----------|------------------------|---------------------------------|--------------------------|------------------------------------------|------------------------------------------|
| 13-cis Retinoic Acid    | 2.9                      | N/A                                              | N/A                                              | x                         | DT                                     | DT (1)  | DT (4)              | DT (4)   | DT (9)                 | DT (4)                          | DT (8)                   | DT                                       | DT                                       |
| 2-methoxyacetic acid    | N/A                      | N/A                                              | 5,000                                            | n.d.                      | DT                                     | n.d.    | DT (6)              | n.d.     | DT (11)                | DT (weak,<br>5,8,9,10)          | DT (6,14)                | n.d.                                     | DT                                       |
| 2-Methoxyethanol        | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | n.d.     | NON (11)               | NON (10)                        | NON (14)                 | n.d.                                     | NON                                      |
| 5-Fluorouracil          | 4.25                     | N/A                                              | N/A                                              | D                         | DT                                     | DT (1)  | DT (1,2,4)          | DT (2,4) | DT (2)                 | DT (9; High, 2;<br>Strong, 5,6) | DT (4; Strong, 5)        | DT                                       | DT                                       |
| 9-cis Retinoic Acid     | 0.4                      | N/A                                              | N/A                                              | D                         | DT                                     | DT      | DT<br>(mEST ref 4)  | DT (6)   | n.d.                   | DT (4)                          | n.d.                     | DT                                       | DT                                       |
| Acetaminophen           | 116.4                    | N/A                                              | N/A                                              | В                         | NON                                    | NON (1) | NON (2)             | n.d.     | NON (8)                | n.d.                            | DT (9)                   | NON                                      | NON                                      |
| Acitretin               | 1.3                      | N/A                                              | N/A                                              | х                         | DT                                     | DT      | DT (2)              | DT (2)   | n.d.                   | DT (4)                          | DT (19)                  | DT                                       | DT                                       |
| Acycloguanosine         | 3                        | N/A                                              | N/A                                              | В                         | NON                                    | NON (1) | DT (2)              | NON (6)  | n.d.                   | n.d.                            | DT (10)                  | NON                                      | NON                                      |
| all-trans Retinoic Acid | 1.2                      | 0.0017                                           | 0.2                                              | D                         | DT                                     | DT (1)  | DT (3)              | DT (3)   | DT (2,3,8,9,14)        | DT (1,4; Strong,<br>5,6)        | DT (7,8)                 | DT                                       | DT                                       |
| Aminopterin             | 0.3                      | N/A                                              | N/A                                              | х                         | DT                                     | DT (1)  | DT (4)              | DT (2)   | n.d.                   | n.d.                            | n.d.                     | DT                                       | DT                                       |
| Amoxicillin             | 20.5                     | N/A                                              | N/A                                              | В                         | NON                                    | NON (1) | NON (2)             | n.d.     | n.d.                   | n.d.                            | n.d.                     | NON                                      | NON                                      |
| Artesunate              | 73.9                     | N/A                                              | 0.02                                             | n.d.                      | DT                                     | DT      | DT (5,6)            | DT (5,6) | n.d.                   | n.d.                            | n.d.                     | DT                                       | n.d.                                     |
| Ascorbic Acid           | 90                       | N/A                                              | N/A                                              | А                         | NON                                    | NON (2) | NON (2)             | n.d.     | NON (2,4,8)            | DT (1), NON (5)                 | NON (4)                  | NON                                      | NON                                      |
| Atrazine                | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6)   | DT (13); NON<br>(5,14) | n.d.                            | n.d.                     | DT                                       | DT                                       |
| Bosentan                | 2                        | N/A                                              | N/A                                              | х                         | DT                                     | DT      | DT (1)              | NON (1)  | n.d.                   | n.d.                            | n.d.                     | NON                                      | n.d.                                     |
| Busulfan                | 49.6                     | N/A                                              | N/A                                              | D                         | DT                                     | DT (1)  | DT (2,4)            | DT (6)   | n.d.                   | DT (1; High, 2)                 | DT (Strong, 5)           | DT                                       | DT                                       |
| Caffeine                | 9.3                      | 7.7                                              | 325                                              | с                         | NON                                    | NON (1) | DT (2,4)            | DT (4)   | DT (3,8)               | NON (1), DT<br>(Weak, 5)        | DT (6)                   | NON                                      | NON                                      |
| Camphor                 | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | NON (2) | NON (6)             | NON (6)  | NON (2)                | NON (5,8),<br>DT (Mod., 2)      | NON (4), DT<br>(weak, 5) | NON                                      | NON                                      |
| Carbamazepine           | 47                       | N/A                                              | N/A                                              | D                         | DT                                     | DT (1)  | DT (2,5)            | n.d.     | DT (7)                 | DT (Mod., 2)                    | DT (Weak, 5)             | DT                                       | DT                                       |
| Chlorophacinone         | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6)   | n.d.                   | n.d.                            | n.d.                     | DT                                       | DT                                       |
| Clopyralid              | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | DT (6)   | NON (5),<br>DT (14)    | n.d.                            | n.d.                     | NON                                      | NON                                      |
| Cyproconazole           | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6) <sup>b</sup> | DT (6)   | DT (5, 11)             | DT (7)                          | DT (1)                   | NON                                      | NON                                      |
| Cytosine Arabinoside    | 0.6                      | N/A                                              | N/A                                              | D                         | DT                                     | DT (1)  | DT (4)              | n.d.     | DT (6)                 | DT (1; High, 2)                 | DT (Strong, 5)           | DT                                       | DT                                       |
| Dibutylamine            | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | n.d.     | n.d.                   | n.d.                            | n.d.                     | NON                                      | DT                                       |
| Dimethyl phthalate      | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | n.d.     | DT (2, 5),<br>NON (14) | NON (5,8),<br>DT (Weak, 5,8:    | DT (4, weak 5)           | NON                                      | NON                                      |

# **Stemina**

| Compound          | Therapeutic<br>Cmax (μM) | Negative<br>Exposure (μM)<br>Daston et al., 2014 | Positive<br>Exposure (μM)<br>Daston et al., 2014 | FDA Pregnancy<br>Category | "Truth"<br>Classification <sup>a</sup> | Humans  | Rodent              | Rabbit                         | Zebrafish <sup>d</sup> | mEST <sup>d</sup>             | WEC <sup>d</sup>     | hESC devTOX<br>quickPredict <sup>c</sup> | iPSC devTOX<br>quickPredict <sup>c</sup> |
|-------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------|----------------------------------------|---------|---------------------|--------------------------------|------------------------|-------------------------------|----------------------|------------------------------------------|------------------------------------------|
| Dimethylamine     | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | n.d.                           | NON (15)               | n.d.                          | NON (16)             | NON                                      | NON                                      |
| Diniconazole      | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6) <sup>b</sup> | NON (6)                        | DT (5,14)              | n.d.                          | n.d.                 | DT                                       | DT                                       |
| Dinoseb           | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6)                         | DT (14)                | DT (Weak, 3)                  | n.d.                 | NON                                      | NON                                      |
| Diphenhydramine   | 0.25                     | N/A                                              | N/A                                              | В                         | NON                                    | NON (1) | NON (4),<br>DT (9)  | NON (4)                        | DT (8)                 | DT (1, 9; Weak,<br>5)         | NON (4)              | NON                                      | NON                                      |
| Diphenylhydantoin | 79.3                     | N/A                                              | N/A                                              | D                         | DT                                     | DT (1)  | DT (4)              | DT (4)                         | NON (6)                | DT (1; Mod. 2,6;<br>Weak 5)   | DT<br>(4; Weak, 5)   | NON                                      | NON                                      |
| Diquat dibromide  | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6)                         | DT (5),<br>NON (14)    | n.d.                          | n.d.                 | DT                                       | DT                                       |
| Doxylamine        | 0.38                     | N/A                                              | N/A                                              | В                         | NON                                    | NON (1) | NON (4)             | NON (4)                        | n.d.                   | DT (Weak, 3)                  | NON (4)              | NON                                      | NON                                      |
| D-Penicillamine   | 13.4                     | N/A                                              | N/A                                              | D                         | DT                                     | DT (1)  | DT (4)              | n.d.                           | NON (4)                | NON (3)                       | NON (4)              | DT                                       | NON                                      |
| Endosulfan        | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | NON (6)                        | DT (5,14)              | n.d.                          | n.d.                 | DT                                       | DT                                       |
| Epoxiconazole     | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT(10) <sup>b</sup> | DT(9) <sup>b</sup>             | n.d.                   | DT (weak, 12)                 | n.d.                 | n.d.                                     | DT                                       |
| Ethylene Glycol*  | N/A                      | 1,400                                            | 57,000                                           | n.d.                      | DT                                     | n.d.    | DT (5,6)            | NON (6)                        | DT (14)                | n.d.                          | DT (3,15)            | n.d.                                     | DT                                       |
| Etretinate        | 1.1                      | N/A                                              | N/A                                              | x                         | DT                                     | DT      | DT (2)              | DT (2)                         | n.d.                   | DT (4)                        | DT (19)              | DT                                       | DT                                       |
| Everolimus        | 0.02                     | N/A                                              | N/A                                              | D                         | DT                                     | DT      | DT $(1)^{b}$        | $DT\left(1 ight)^{\mathrm{b}}$ | n.d.                   | n.d.                          | n.d.                 | DT                                       | n.d.                                     |
| Fipronil          | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | NON (6)                        | DT (5,14)              | n.d.                          | n.d.                 | DT                                       | DT                                       |
| Fluazinam         | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6)                         | DT (5,14)              | n.d.                          | n.d.                 | DT                                       | DT                                       |
| Flusilazole       | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6) <sup>b</sup>            | DT (5,11,14)           | DT (7)                        | DT (1)               | DT                                       | DT                                       |
| Folic Acid        | 0.035                    | N/A                                              | N/A                                              | А                         | NON                                    | NON (2) | NON (8)             | n.d.                           | n.d.                   | n.d.                          | NON (2)              | NON                                      | NON                                      |
| Genistein         | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | n.d.                           | DT (14)                | DT (Strong, 11)               | DT (17)              | DT                                       | DT                                       |
| Glycerol          | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | NON (6)                        | DT (14)                | n.d.                          | NON                  | NON                                      | NON                                      |
| Glycolic Acid     | N/A                      | 275                                              | 5,000                                            | n.d.                      | DT                                     | n.d.    | DT (6)              | n.d.                           | n.d.                   | n.d.                          | DT (15)              | n.d.                                     | DT                                       |
| Hexaconazole      | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6) <sup>b</sup>            | DT (5,11,14)           | DT (7)                        | DT (1)               | DT                                       | DT                                       |
| Hexazinone        | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | NON (6)                        | NON (5),<br>DT (14)    | n.d.                          | n.d.                 | NON                                      | NON                                      |
| Hydroxyurea       | 565                      | N/A                                              | 350                                              | D                         | DT                                     | DT (1)  | DT (3,4)            | DT (3,4)                       | DT (2)                 | DT (9; High, 2;<br>Strong, 5) | DT<br>(4; Strong, 5) | DT                                       | DT                                       |
| Imazamox          | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | NON (6)                        | NON (5,14)             | n.d.                          | n.d.                 | NON                                      | NON                                      |
| lmazapyr          | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | NON (6)                        | NON (5),<br>DT (14)    | n.d.                          | n.d.                 | NON                                      | NON                                      |

| <b>C</b> • |       | •     |      |
|------------|-------|-------|------|
|            | en    | nır   | າລ   |
| BIOM       | ARKER | DISCO | VERY |

| Compound              | Therapeutic<br>Cmax (μM) | Negative<br>Exposure (μM)<br>Daston et al., 2014 | Positive<br>Exposure (μM)<br>Daston et al., 2014 | FDA Pregnancy<br>Category | "Truth"<br>Classification <sup>a</sup> | Humans  | Rodent    | Rabbit              | Zebrafish <sup>d</sup>  | mEST <sup>d</sup>             | WEC <sup>d</sup>   | hESC devTOX<br>quickPredict <sup>c</sup> | iPSC devTOX<br>quickPredict <sup>c</sup> |
|-----------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------|----------------------------------------|---------|-----------|---------------------|-------------------------|-------------------------------|--------------------|------------------------------------------|------------------------------------------|
| Isoniazid             | 51                       | N/A                                              | N/A                                              | с                         | NON                                    | NON (1) | NON (3,4) | NON (3,4)           | NON (2,6),<br>DT (8,14) | NON (1,2,5)                   | DT<br>(4; Weak, 5) | NON                                      | NON                                      |
| Ketoconazole          | 7.9                      | N/A                                              | N/A                                              | с                         | DT                                     | n.d.    | DT (2)    | DT (2) <sup>b</sup> | n.d.                    | DT (weak, 12)                 | n.d.               | n.d.                                     | DT                                       |
| Lapatinib*            | 4.2                      | N/A                                              | N/A                                              | D                         | DT                                     | DT      | DT (1)    | DT (1)              | n.d.                    | n.d.                          | n.d.               | NON                                      | n.d.                                     |
| Levothyroxine         | 0.14                     | N/A                                              | N/A                                              | А                         | NON                                    | NON (1) | NON (6)   | NON (6)             | n.d.                    | n.d.                          | n.d.               | NON                                      | NON                                      |
| Loratadine            | 0.03                     | N/A                                              | N/A                                              | В                         | NON                                    | NON     | NON (6)   | NON (6)             | DT (4)                  | NON (2)                       | NON (4,5)          | NON                                      | n.d.                                     |
| Lovastatin*           | 0.02                     | N/A                                              | N/A                                              | x                         | DT                                     | DT      | DT (1)    | NON (1)             | DT (4,14)               | DT (Weak,<br>Strong, 3)       | n.d.               | NON                                      | n.d.                                     |
| Methotrexate          | 0.2                      | N/A                                              | N/A                                              | x                         | DT                                     | DT (1)  | DT (4)    | DT (4)              | DT (4,14), NON<br>(8)   | DT (1; High, 2;<br>Strong, 5) | DT (4)             | DT                                       | DT                                       |
| Metoclopramide        | 0.15                     | N/A                                              | N/A                                              | В                         | NON                                    | NON (1) | NON (2)   | NON (2)             | NON (4)                 | DT (Mod., 2;<br>Weak, 3)      | NON (4,5)          | NON                                      | NON                                      |
| Myclobutanil          | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)    | DT (6)              | DT (1)                  | DT (7)                        | DT (1)             | n.d.                                     | DT                                       |
| Novaluron             | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)   | NON (6)             | NON (5),<br>DT (14)     | n.d.                          | n.d.               | NON                                      | NON                                      |
| o,p' -DDT             | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)    | n.d.                | NON (14)                | n.d.                          | n.d.               | DT                                       | DT                                       |
| Ochratoxin A          | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)    | DT (6)              | DT (16)                 | DT (weak, 3)                  | DT (14)            | DT                                       | DT                                       |
| o-Phenylphenol        | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)   | NON (6)             | DT (14)                 | n.d.                          | n.d.               | NON                                      | NON                                      |
| Penicillin G          | 134.6                    | N/A                                              | N/A                                              | В                         | NON                                    | NON (1) | NON (3)   | NON (3,4)           | NON (2,6,8)             | NON (1,2,5,6,9)               | NON (4,5)          | NON                                      | NON                                      |
| Propiconazole         | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)    | DT (6) <sup>b</sup> | DT (5,14)               | DT (weak, 12)                 | n.d.               | NON                                      | DT                                       |
| Propylene Glycol      | N/A                      | N/A                                              | 850,000                                          | n.d.                      | NON                                    | n.d.    | NON (6)   | NON (6)             | DT (14)                 | n.d.                          | n.d.               | NON                                      | NON                                      |
| Pyridaben             | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)    | NON (6)             | DT (5,14)               | n.d.                          | n.d.               | DT                                       | DT                                       |
| Resveratrol           | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)   | n.d.                | NON (17)                | n.d.                          | n.d.               | DT                                       | NON                                      |
| Retinol               | 2.4                      | N/A                                              | N/A                                              | с                         | NON                                    | NON (1) | DT (3)    | DT (3)              | DT (2,6,14)             | NON (4)                       | DT (7)             | NON                                      | NON                                      |
| Rotenone              | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)    | n.d.                | DT (5,12,14)            | n.d.                          | n.d.               | DT                                       | DT                                       |
| Saccharin             | 1.4                      | 24                                               | N/A                                              | А                         | NON                                    | NON (1) | NON (3,4) | NON (3,4)           | NON (2,3,8)             | NON (1,2,5,9)                 | DT (4),<br>NON (5) | NON                                      | NON                                      |
| Sitagliptin*          | 0.95                     | N/A                                              | N/A                                              | В                         | NON                                    | NON     | DT (6)    | NON (6)             | n.d.                    | n.d.                          | n.d.               | NON                                      | n.d.                                     |
| Sorbitol              | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)   | n.d.                | n.d.                    | n.d.                          | n.d.               | NON                                      | NON                                      |
| Spiroxamine           | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)    | DT (6)              | DT (5),<br>NON (14)     | n.d.                          | n.d.               | DT                                       | NON                                      |
| Tetrabromobisphenol A | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)   | n.d.                | DT (14)                 | n.d.                          | n.d.               | NON                                      | NON                                      |

# **Stemina**

| Author: JA Palmer   |
|---------------------|
| jpalmer@stemina.com |

| Compound           | Therapeutic<br>Cmax (μM) | Negative<br>Exposure (µM)<br>Daston et al., 2014 | Positive<br>Exposure (μM)<br>Daston et al., 2014 | FDA Pregnancy<br>Category | "Truth"<br>Classification <sup>a</sup> | Humans  | Rodent              | Rabbit              | Zebrafish <sup>d</sup>  | mEST <sup>d</sup>             | WEC <sup>d</sup>   | hESC devTOX<br>quickPredict <sup>c</sup> | iPSC devTOX<br>quickPredict <sup>c</sup> |
|--------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------|----------------------------------------|---------|---------------------|---------------------|-------------------------|-------------------------------|--------------------|------------------------------------------|------------------------------------------|
| Thalidomide        | 12.4                     | N/A                                              | N/A                                              | x                         | DT                                     | DT (1)  | NON (4)             | DT (4)              | DT (4,14)               | n.d.                          | DT (4)             | DT                                       | DT                                       |
| Thiacloprid        | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6)              | NON (5),<br>DT (14)     | n.d.                          | n.d.               | NON                                      | NON                                      |
| Thiamine           | 0.67                     | N/A                                              | N/A                                              | А                         | NON                                    | NON (1) | NON (6)             | n.d.                | n.d.                    | n.d.                          | n.d.               | NON                                      | NON                                      |
| ThioTEPA           | 7                        | N/A                                              | N/A                                              | D                         | DT                                     | DT      | DT (6)              | DT (1)              | DT (10)                 | n.d.                          | n.d.               | DT                                       | n.d.                                     |
| Thiram             | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6)              | DT (5,14)               | n.d.                          | n.d.               | DT                                       | DT                                       |
| Triadimefon        | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (6)              | DT (6)              | DT (1)                  | DT (7)                        | DT (1)             | n.d.                                     | DT                                       |
| Triclopyr          | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | NON (6)             | DT (5),<br>NON (14)     | n.d.                          | n.d.               | NON                                      | NON                                      |
| Triethylene Glycol | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | NON (6)             | NON (14)                | n.d.                          | n.d.               | NON                                      | NON                                      |
| Triticonazole*     | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | DT (6) <sup>b</sup> | DT (6) <sup>b</sup> | DT (1)                  | DT (7)                        | DT (1)             | n.d.                                     | DT                                       |
| ттлрв              | N/A                      | N/A                                              | N/A                                              | n.d.                      | DT                                     | n.d.    | DT (2)              | DT<br>(mEST ref 4)  | n.d.                    | DT (4)                        | DT (19)            | DT                                       | DT                                       |
| Valproic Acid      | 1000                     | N/A                                              | 800                                              | D                         | DT                                     | DT (1)  | DT (3,4)            | DT (3,4)            | DT (3,6,8), NON<br>(14) | DT (Mod., 2,6;<br>Weak, 5; 9) | DT<br>(4; Weak, 5) | DT                                       | DT                                       |
| Warfarin           | 23.4                     | N/A                                              | N/A                                              | x                         | DT                                     | DT (1)  | DT (2,6)            | NON (4)             | DT (4,14)               | NON (2,3)<br>DT (Weak, 3)     | DT (4),<br>NON (5) | DT                                       | NON                                      |
| Zoxamide           | N/A                      | N/A                                              | N/A                                              | n.d.                      | NON                                    | n.d.    | NON (6)             | NON (6)             | DT (5,14)               | n.d.                          | n.d.               | DT                                       | DT                                       |

| Compound        | Notes                                                                                                                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ethylene Glycol | Developmentally Toxic at very high exposures (Note positive exposure level from Daston et al., 2014)                                                             |
| Lapatinib       | Human clinical exposure is equivalent to the approximate rodent developmental toxicity NOEL                                                                      |
| Lovastatin      | Developmental toxicity observed in rodents at doses >40X human dose                                                                                              |
| Sitagliptin     | Develomental toxicity observed in rodents at doses 100X maximum human recommended daily dose.                                                                    |
| Triticonazole   | Rat dLEL is 1000 mg/kg/day and chemical is typically considered to be a non-developmental toxicant as maternal toxicity was also observed at this high exposure. |



| Reference                        | Authors        | Title                                                                                                                                                 | Year | Journal                                                                   | Volume       | Pages   |
|----------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------|--------------|---------|
| Humans 1<br>Rodent 1<br>Rabbit 1 | Briggs et al   | Drugs in Pregnancy and Lactation, Ninth Edition                                                                                                       | 2011 | N/A                                                                       | N/A          | N/A     |
| Humans 2<br>Rodent 2<br>Rabbit 2 | N/A            | Teratogen Information System (TERIS). Web site:<br>https://apps.uwmedicine.org/Teris/Teris1a.aspx?ReturnUrl=%2fteris%2fdefault.aspx                   | N/A  | N/A                                                                       | N/A          | N/A     |
| Rodent 3<br>Rabbit 3<br>ZET 2    | Brannen et al  | Development of a zebrafish embryo teratogenicity assay and quantitative prediction model.                                                             | 2010 | Birth Defects Research. Part B, Developmental and reproductive toxicology | 89(1)        | 66-77   |
| Rodent 4<br>Rabbit 4             | Jelovsek et al | Prediction of risk for human developmental toxicity: How important are animal studies for hazard identification?                                      | 1989 | Obstetrics & Gynecology                                                   | 74(4)        | 624-636 |
| Rodent 5<br>Rabbit 5             | N/A            | Data provided as part of DART WORKSHOP ON CONSENSUS LIST OF DEVELOPMENTAL TOXICANTS. May 17-18, 2011 Washington, D.C.                                 | 2011 | N/A                                                                       | N/A          | N/A     |
| Rodent 6<br>Rabbit 6<br>WEC 3    | N/A            | ACToR. Web site:<br>http://actor.epa.gov/actor/faces/ACToRHome.jsp;jsessionid=C5C2FC997F58922FC306B786421ADF66                                        | N/A  | N/A                                                                       | N/A          | N/A     |
| Rodent 7<br>Rabbit 7             | Heindel et al  | The developmental toxicity of boric acid in mice, rats and rabbits                                                                                    | 1994 | Environmental Health Perspectives                                         | 102(Suppl 7) | 107-112 |
| Rodent 8                         | Hansen et al   | Effect of dietary supplementation with folic acid on valproate-induced neural tube defects                                                            | 1993 | Teratology                                                                | 47(5)        | 420     |
| Rabbit 8                         | Sweeting et al | Species- and strain-dependent teratogenicity of methanol in rabbits and mice                                                                          | 2011 | Reproductive Toxicology                                                   | 31(1)        | 50-58   |
| Rodent 9                         | Bailey et al   | The future of teratology research is in vitro                                                                                                         | 2005 | Biogenic Amines                                                           | 19(2)        | 97-145  |
| Rodent 10<br>Rabbit 9            | ECHA           | BACKGROUND DOCUMENT TO THE OPINION OF THE COMMITTEE FOR RISK ASSESSMENT ON A PROPOSAL FOR<br>HARMONISED CLASSIFICATION AND LABELLING OF EPOXICONAZOLE | 2010 | N/A                                                                       | N/A          | N/A     |
| Rodent 11                        | EPA            | TSCA Work Plan Chemical Risk Assessment for N-Methylpyrrolidone: Paint Stripper Use                                                                   | 2015 | N/A                                                                       | N/A          | N/A     |



| Reference                | Authors              | Title                                                                                                                                                                                                 | Year | Journal                                                                      | Volume  | Pages   |
|--------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------|---------|---------|
| mEST 1                   | Newall et al         | The Stem-Cell Test: an in vitro assay for teratogenic potential Results of a blind trial with 25 compounds.                                                                                           | 1996 | Toxicology in Vitro                                                          | 10      | 229-240 |
| mEST 2                   | Paquette et al       | Assessment of the embryonic stem cell test and application and use in the pharmaceutical industry                                                                                                     | 2008 | Birth Defects Research. Part B, Developmental and<br>reproductive toxicology | 83      | 104-111 |
| mEST 3                   | Marx-Stoelting et al | A review of the implementation of the embryonic stem cell test                                                                                                                                        | 2009 | Alternatives to Laboratory Animals                                           | 37      | 313-328 |
| mEST 4<br>WEC 19         | Louisse et al        | Relative developmental toxicity potencies of retinoids in the embryonic stem cell test compared with their relative potencies in in vivo and two other in vitro assays for developmental toxicity     | 2011 | Toxicology Letters                                                           | 203     | 1-8     |
| mEST 5                   | Genschow et al       | Validation of the embryonic stem cell test (EST) in the ECVAM international validation study on in vitro embryotoxicity                                                                               | 2004 | Alternatives to Laboratory Animals                                           | 32      | 209-244 |
| mEST 6                   | zur Nieden et al     | Molecular multiple endpoint embryonic stem cell test - a possible approach to test for the teratogenic potential of compounds                                                                         | 2004 | Toxicology and Applied Pharmacology                                          | 194     | 257-269 |
| mEST 7<br>WEC 1<br>ZET 1 | Jong et al           | Comparison of the mouse embryonic stem cell test, the rat whole embryo culture and the zebrafish embryotoxicity test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles | 2011 | Toxicology and Applied Pharmacology                                          | 253     | 103-111 |
| mEST 8                   | Suzuki et al         | Evaluation of a novel high-throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro                                                               | 2011 | Toxicological Sciences                                                       | 124 (2) | 460-471 |
| mEST 9                   | Peters et al         | Evaluation of the embryotoxic potency of compounds in a newly revised high throughput embryonic stem cell test                                                                                        | 2008 | Toxicological Sciences                                                       | 105 (2) | 342-350 |
| mEST 10                  | Verwei et al         | Prediction of in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling                                                                                             | 2006 | Toxicology Letters                                                           | 165 (1) | 79-87   |
| mEST 11                  | Kong et al           | Individual and combined developmental toxicity assessment of bisphenol A and genistein using the embryonic stem cell test in vitro.                                                                   | 2013 | Food and Chemical Toxicolgy                                                  | 60      | 497-505 |
| mEST 12                  | Dreisig et al        | Predictive Value of Cell Assays for Developmental Toxicity and Embryotoxicity of Conazole Fungicides                                                                                                  | 2013 | ALTEX                                                                        | 30      | 319-330 |



| Reference        | Authors         | Title                                                                                                                                                  | Year | Journal                                                                   | Volume | Pages   |
|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------|--------|---------|
| WEC 2            | Hansen          | Folates in reproduction: in vitro studies                                                                                                              | 1995 | Teratology                                                                | 51(6)  | 12A     |
| WEC 4            | Zhang et al     | Development of a streamlined rat whole embryo culture assay for classifying teratogenic potential of<br>pharmaceutical compounds                       | 2012 | Toxicological Sciences                                                    | 127(2) | 535-546 |
| WEC 5            | Thomson et al   | Not a walk in the park: The ECVAM whole embryo culture model challenged with pharmaceuticals and attempted<br>improvements with random forest design   | 2011 | Birth Defects Research. Part B, Developmental and reproductive toxicology | 92     | 111-121 |
| WEC 6            | Robinson et al  | Embryotoxicant-specific transcriptomic responses in rat postimplantation whole-embryo culture                                                          | 2010 | Toxicological Sciences                                                    | 118(2) | 675-685 |
| WEC 7            | Ritchie et al   | Effect of co-administration of retinoids on rat embryo development in vitro                                                                            | 2003 | Birth Defects Research. Part A, Clinical and molecular teratology         | 67(6)  | 444-451 |
| WEC 8            | Klug et al      | Influence of 13-cis and all-trans retinoic acid on rat embryonic development in vitro: correlation with isomerisation and drug transfer to the embryo. | 1989 | Archives of Toxicology                                                    | 63(3)  | 185-192 |
| WEC 9            | Stark et al     | Dysmorphogenesis elicited by microinjected acetaminophen analogs and metabolites in rat embryos cultured in<br>vitro                                   | 1990 | The Journal of Pharmacology and Experimental Therapeutics                 | 255(1) | 74-82   |
| WEC 10           | Klug et al      | Effect of acyclovir on mammalian embryonic development in culture                                                                                      | 1985 | Archives of Toxicology                                                    | 58(2)  | 89-96   |
| WEC 14<br>ZET 12 | N/A             | http://ecvam-dbalm.jrc.ec.europa.eu/                                                                                                                   | N/A  | N/A                                                                       | N/A    | N/A     |
| WEC 15           | Klug et al      | Effects of ethylene glycol and metabolites on in vitro development of rat embryos during organogenesis.                                                | 2001 | Toxicology in Vitro                                                       | 15(6)  | 635-42  |
| WEC 16           | Guesta & Varmab | Developmental toxicity of methylamines in mice                                                                                                         | 1991 | Journal of Toxicology and Environmental Health                            | 32     | 319-330 |
| WEC 17           | McClain et al   | Reproductive safety studies with genistein in rats.                                                                                                    | 2007 | Food Chem Toxicol                                                         | 45(8)  | 1319-32 |



| Reference | Authors             | Title                                                                                                                                                                                                                        | Year | Journal                                                                      | Volume    | Pages     |
|-----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------|-----------|-----------|
| ZET 3     | Selderslaghs et al  | Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo.                                                                                                               | 2009 | Reproductive Toxicology                                                      | 28(3)     | 308-320   |
| ZET 4     | Gustafson et al     | Inter-laboratory assessment of a harmonized zebrafish developmental toxicology assay - progress report on phase I.                                                                                                           | 2012 | Reproductive Toxicology                                                      | 33(2)     | 155-164   |
| ZET 5     | Padilla et al       | Zebrafish developmental screening of the ToxCast™ Phase I chemical library.                                                                                                                                                  | 2012 | Reproductive Toxicology                                                      | 33(2)     | 174-187   |
| ZET 6     | McGrath et al       | Zebrafish: a predictive model for assessing drug-induced toxicity.                                                                                                                                                           | 2008 | Drug Discovery Today                                                         | 13(9-10)  | 394-401   |
| ZET 7     | Madureira et al     | The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal)experimental assessment<br>using a zebrafish embryo test.                                                                               | 2011 | Environmental Toxicology and Pharmacology                                    | 32(2)     | 212-217   |
| ZET 8     | Selderslaghs et al  | Feasibiligy study of the zebrafish assay as an alternative method to screen for developmental toxicity and<br>embryotoxicity using a training set of 27 compounds                                                            | 2112 | Reproductive Toxicology                                                      | 33        | 142-154   |
| ZET 9     | Herrmann            | Teratogenic effects of retinoic acid and related subastances on the early development of the zebrafish as assessed<br>by a novel scoring system                                                                              | 1995 | Toxicology in Vitro                                                          | 9(3)      | 267-283   |
| ZET 10    | Weigt et al         | Zebrafish ( <i>Danio rerio</i> ) embryos as a model for testing proteratogens                                                                                                                                                | 2011 | Toxicology                                                                   | 281 (1-3) | 25-36     |
| ZET 11    | Hermsen et al       | Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies                                                                                  | 2011 | Toxicology in Vitro                                                          | 25 (3)    | 745-53    |
| ZET 13    | Wiegand et al       | Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio).                                                                                                                                                        | 2001 | Ecotoxicology and Environmental Safety                                       | 49 (3)    | 199-205   |
| ZET 14    | Truong et al        | Multidimensional in vivo hazard assessment using zebrafish.                                                                                                                                                                  | 2014 | Toxicological Sciences                                                       | 137 (1)   | 212-33    |
| ZET 15    | Groth et al         | Toxicity studies in fertilized zebrafish eggs treated with N-methylamine, N,N-dimethylamine, 2-aminoethanol,<br>isopropylamine, aniline, N-methylaniline, N,N-dimethylaniline, quinone, chloroacetaldehyde, or cyclohexanol. | 1993 | Bulletin of environmental contamination and toxicology                       | 50(6)     | 878-82    |
| ZET 16    | Ali et al           | Teratology in Zebrafish Embryos: A Tool for Risk Assessment                                                                                                                                                                  | 2007 | MS Thesis                                                                    | N/A       | N/A       |
| ZET 17    | Jheng-Yu et al      | Curcumin Affects Development of Zebrafish Embryo                                                                                                                                                                             | 2007 | Biological and Pharmaceutical Bulletin                                       | 30 (7)    | 1336-1339 |
|           | Kleinstreuer et al. | Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells<br>and metabolomics                                                                                           | 2011 | Toxicology and Applied Pharmacology                                          | 257       | 111-121   |
|           | Daston et al.       | Exposure-based validation list for developmental toxicity screening assays                                                                                                                                                   | 2014 | Birth Defects Research. Part B, Developmental and<br>reproductive toxicology | 101(6)    | 423-428   |