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Abstract  
A variety of animal model systems were employed to disrupt the central and peripheral 
circadian clocks using four main categories of exposures (Table 1). Alterations in the 
intensity and timing of light were employed to mimic shift work, jet lag, or exposure to 
artificial light at night (ALAN) via shifts of varying duration and frequency in the light-
dark cycle (LD), continuous bright light (LL), or bright light during the day and dim light 
at night (Ldim). These light exposure studies were used to directly disrupt the circadian 
clock and several measures of circadian disruption were reported including activity, body 
temperature, melatonin and corticosterone levels, and expression of circadian-related 
genes such as clock genes. Numerous measures of the effects of light studies were also 
reported including metabolic, cardiovascular, immune, neurological, reproductive, and 
mental health (Tables 1 and 2). The effects of light on many different species of animals 
were studied including lab strains of rat and mouse as well as hamsters, gerbils, 
cockerels, quail, and wild rodents.   
 
Three additional categories of animal models were used to probe the entrainment of 
peripheral circadian clocks: timing of activity, timing of food, and timing of sleep. 
Similar measures of circadian disruption were reported in these studies with the exception 
of melatonin, which was only measured in light studies. The measures of effects were 
more limited for peripheral disruption and focused solely on metabolic effects. Of the 
studies reviewed by OHAT, only laboratory strains of rat or mouse were employed.   
 
Alterations in the timing of food availability were the most numerous of the three 
additional categories of studies and among the first to investigate the effects of disruption 
of the peripheral circadian clocks. The effects of food timing on metabolic risk factors 
were numerous and included measures of bodyweight, adiposity, food intake, energy 
expenditure, glucose and lipid metabolism, leptin and ghrelin levels, and expression of 
many metabolism-related genes. Evidence from food availability studies indicates that 
food is the strongest entrainment signal, or zeitgeber, of the peripheral clocks and may 
actually uncouple central and peripheral circadian rhythms, which may be protective 
against short-term disruptions such as jet lag. 
 
Alterations in the timing of activity or sleep were far fewer than for light exposures or 
food availability. During activity studies, rats were placed in slowly rotating wheels for 
regular shifts of 8 hours per day, 5 days per week, or for rotating 12 hour shifts; these 
studies were often paired with shifts in the timing of light and/or food to more closely 
mimic human shift work. For timing of sleep studies, several scenarios were used to limit 
sleep duration or disrupt the normal sleep cycle from complete deprivation of sleep via 
slowly rotating wheels, restriction of sleep to specific times of day, or interruption of 
sleep using gentle probing or similar methods. Due to the limited number of studies, the 
impact of these zeitgebers on entrainment of the peripheral clocks and downstream 
metabolic effects are not as clear as those for food.  
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Table 1. Animal models of SW, ALAN and CD: metabolic outcomes 
 Light* Timing of Activity  Timing of 

Food 
Timing of 
Sleep  

Types of 
exposure models 

Shifts in light-dark 
(LD) cycle: vary in 
length of shift (1-12h), 
frequency of shift 
(every day vs. once 
per week), duration of 
shift (once vs. 
repeated), direction of 
shift (forward vs. 
backward) 
 
Continuous light 
exposure: Constant 
24h bright light (LL); 
Bright light during day 
with dim light at night 
(LDim) 

Forced activity: rats 
housed in slowly 
rotating wheels for 
shifts (e.g., 8h per 
day, 5 days per 
week; or rotating 
12h shift); able to lie 
down and eat, but 
can’t sleep 
 
Often paired with 
timing of food 
availability and/or 
light 

Restricted food 
availability:  
restricted to 
light or dark 
phase; duration 
of exposure 
varies (e.g., 
12L:12D, 
16L:8D, 
8L:16D, etc.) 

Shift in timing 
of sleep to 
dark phase for 
nocturnal 
rodents: 
variety of 
models 
including 
disruption, 
restriction, 
complete 
deprivation  
 
May use 
slowly 
rotating 
wheels, gentle 
probing upon 
falling asleep, 
etc. 

Measures of 
circadian 
disruption 

Activity; body 
temperature; 
melatonin; 
corticosterone; gene 
expression (e.g. clock 
genes) 

Activity; 
corticosterone 

Activity; body 
temperature; 
corticosterone; 
gene 
expression  

Activity; 
corticosterone
; gene 
expression  

Metabolic     
Measures of 
effect 

Bodyweight; 
adiposity; food 
(caloric) intake; 
energy expenditure 
(total EE, RER); 
glucose metabolism 
(plasma glucose, 
plasma insulin, plasma 
glucagon, glucose 
tolerance, glycogen 
levels); leptin levels; 
lipid metabolism 
(plasma cholesterol, 
plasma triglycerides); 
gene expression (e.g. 
liver genes) 

Bodyweight; 
adiposity; food 
intake; glucose 
metabolism; lipid 
metabolism; gene 
expression (e.g. liver 
genes) 

Bodyweight; 
adiposity; food 
(caloric) intake; 
energy 
expenditure 
(total EE, 
RER); glucose 
metabolism; 
leptin levels; 
ghrelin levels; 
lipid 
metabolism; 
gene 
expression  

Bodyweight; 
food intake; 
total energy 
expenditure; 
glucose 
metabolism; 
lipid 
metabolism; 
leptin; gene 
expression  

*Excluded non-24h LD cycles  
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Table 2. Animal models of SW, ALAN and CD: non-cancer health outcomes  
 Cardiovascula

r 
Immune Neurological Reproductive Mental Health 

Measures of 
effects 

Blood 
pressure; heart 
rate; 
Plasminogen 
activator 
inhibitor-1 
(PAI-1); 
angiotensin; 
survival time 
in aged, 
cardiomyopath
ic, or 
hypertensive 
animals; 
cardiac gene 
expression; 
epigenetic 
factors 
(miRNA 
expression); 
whole heart 
morphology; 
cardiomyocyte 
morphology 

Cellular immune 
response: various 
challenges 
including delayed-
type 
hypersensitivity 
(DTH), LPS-
induced fever, 
bactericide activity 
of blood;  
Concanavalin A 
stimulation of 
peripheral blood 
(Con A) and a 
Popliteal Lymph 
Node Assay 
(PLNA); dextran 
sodium sulfate to 
induce colitis; 
cutaneous basophil 
hypersensitivity 
reaction to 
phytohemagglutini
n (PHA-P); MPO; 
NK cell activity 
 
Inflammatory 
response: 
cytokines 
 
Humoral immune 
response: primary 
antibody titers 
 
Sickness behaviors 
(anorexia, 
decreased activity, 
weight loss) 
 

Learning and 
memory: 
conditioned 
place 
preference 
(CPP) ; water 
maze; 
contextual fear 
conditioning; 
Barnes maze  
 
Histology: 
hippocampal 
cell 
proliferation 
and 
neurogenesis 
 
Endocrine 
factors: 
glucorticoid, 
sex steroids 

Estrous cycling: 
plasma 
estrogen, 
luteinizing 
hormone, 
ovulation  
 
Pregnancy 
outcomes: 
pregnancy  to 
term; birth 
weight 
 
Male fertility: 
sperm count, 
ejaculation, 
reproductive 
organ weight 
and morphology 

Depression-like 
behaviors: 
activity, forced 
swim test, 
sucrose 
preference 
 
Anxiety-like 
behaviors: 
blood pressure, 
heart rate, 
elevated plus 
maze, risk 
assessment, 
grooming 
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