
Figure 4. Tiered workflow for identifying 
cytotoxicity data. A two-tiered workflow, where tiering 
reflects priority for the source of cytotoxicity data, has 
been developed to work toward integrating cytotoxicity 
data for contextualizing bioactivity endpoints.
 
• The first tier manually maps cytotoxicity assays to 

concurrently measured bioactivity endpoints.
• The second tier focuses on using cytotoxicity 

assays used for “burst” cytotoxicity point 
calculations (Judson et al. 2016) to derive cell type 
and time point specific cytotoxicity predictions, per 
chemical.

• Future efforts will seek to develop and conduct a 
third tier which will address bioactivity endpoints 
evaluated in assays for which there is no 
cytotoxicity data available at all for the cell line.

To predict cytotoxicity (predicted AC50 representing the point at which cytotoxicity is expected) for chemicals tested in assays without 
concurrent cytotoxicity measured, we developed a machine learning approach. Models were developed for specific subsets of assay 
conditions, namely cell line and time point (e.g., treatment duration). As a proof-of-concept, results are presented for two conditions are 
shown: HepG2 human hepatocarcinoma cells with 24 hrs treatment and HEK293T human embryonic kidney cells with 24 hrs of treatment.

Table 1: Summary of datasets used for machine learning

Figure 5. Undersampling approach. Given the unbalanced dataset (many more inactive chemicals than active chemicals in 
both of the cell type and time point limited cytotoxicity assay groupings), we implemented an undersampling approach. Briefly, 
random selection of inactive chemicals was conducted to achieve a ratio of 60% inactive to 40% active, which was repeated such 
that each final model is an aggregation of 20 undersampled models. The final chemical prediction is the mean of the 20 
predictions for each chemical.

All predictions from the 20 undersampled models are averaged at the chemical level and the R2 performance metric, where an R2 value 
close to 1 indicates near-perfect prediction accuracy, are summarized in Tables 2 and 3. Each model was tuned using a Bayesian 
approach and a maximization of the performance criteria (R2) for 100 iterations. 

Table 2: HepG2 cells treated for 24 hrs - cytotoxicity prediction model performance

Table 3: HEK293T cells treated for 24 hrs - cytotoxicity prediction model performance

The machine learning approaches evaluated (XGBoost and Random Forest) achieved reasonable performance for the two proof-of-
concept datasets. For our examples, XGBoost demonstrates better performance, but advanced machine learning techniques using deep 
learning or ensemble modeling should be considered in the future to strive for even better results.
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• In vitro high-throughput screening (HTS) assay data are a time- and cost-effective approach to provide 
mechanistic insights and predict toxicity for thousands of diverse chemicals. The US interagency 
collaborative Tox21 (Huang et al. 2016) and US EPA’s ToxCast (Thomas et al. 2018) programs provide in 
vitro data for thousands of chemicals and assays (Feshuk 2023). 

• Chemical effects in vitro may be confounded by overt cell stress and cytotoxicity, such that a decrease in 
viable cells could erroneously be attributed to a chemical’s mechanistic effects. Integration of cytotoxicity 
assessment with assay endpoints can bolster confidence in the interpretation of assay outcomes.

• Many chemicals tested in ToxCast/Tox21 HTS assays lack directly relevant cytotoxicity data needed to 
ensure overt toxicity doesn’t confound mechanistic outputs.

•  Additionally, chemicals may have different potency for eliciting cytotoxicity across cell types and time 
trajectory.

• ToxCast/Tox21 cytotoxicity assays can be leveraged to define chemical-specific cytotoxic concentrations.
• For example, the “burst” analysis integrates 91 cytotoxicity assays to define a cytotoxicity limit per 

chemical that may indicate where a “burst” of potentially nonselective bioactivity occurs (Judson et al. 
2016).

• We propose a machine learning approach to predict chemical- and cell type-specific cytotoxicity 
concentrations to provide context for flagging nonspecific in vitro chemical-elicited bioactivity.

Introduction

Integrate cytotoxicity data to provide context for HTS bioactivity
1. Identify bioactivity assay endpoints for which there are direct, concurrent cytotoxicity assessments.
2. For bioactivity assay endpoints without concurrent cytotoxicity data:

• Leverage the 91 cytotoxicity assays that were used in the latest “burst” analyses to refine 
chemical-specific cytotoxicity predictions.

• Group cytotoxicity assay endpoints by cell type and time point and apply multiple machine learning 
algorithms with optimized parameters to predict cell type specific cytotoxicity for each chemical.
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Table 4: Examples of bioactivity assay endpoint mapping to concurrent cytotoxicity 
assay endpoint

      *aeid: assay endpoint identification numbers from invitrodb v3.5

Endpoints with Concurrent CytotoxicityTiered Approach to Integrating Cytotoxicity

Tier 1:
Concurrent Cytotoxicity Assessment

Curated by NICEATM
for ICE cHTS data set

1,433 assay endpoints

156 cytotoxicity 
assay endpoints

invitrodb v3.5

1,277 bioactivity 
assay endpoints

Tier 2:
Cytotoxicity Prediction

91 cytotoxicity assays 
marked for computing 

“burst”

Curated by NICEATM
for ICE cHTS data set

1,873 assay endpoints

invitrodb v3.5

492 bioactivity 
assay endpoints 
with concurrent 

cytotoxicity

Machine Learning 
Workflow (Figure 3)

656 bioactivity endpoints 
with cell type and time 

point matched
predicted cytotoxicity

aeid* Bioactivity Assay Endpoint Name aeid* Cytotoxicity Assay Endpoint Name
1855 ACEA_AR_agonist_80hr 1850 ACEA_AR_agonist_AUC_viability
1856 ACEA_AR_antagonist_80hr 1857 ACEA_AR_antagonist_AUC_viability
2 ACEA_ER_80hr 1852 ACEA_ER_AUC_viability
1829 ArunA_Migration_hNC_dn 1826 ArunA_CellTiter_hNC_dn
1827 ArunA_Migration_hNP_dn 1825 ArunA_CellTiter_hNP_dn
2446 CCTE_Simmons_MITO_inhib_resp_rate_OCR_dn 2450 CCTE_Simmons_MITO_viability
2447 CCTE_Simmons_MITO_inhib_resp_rate_OCR_up 2450 CCTE_Simmons_MITO_viability
906 CEETOX_H295R_ESTRADIOL_dn 1664 CEETOX_H295R_MTT_cell_viability_dn
907 CEETOX_H295R_ESTRADIOL_up 1664 CEETOX_H295R_MTT_cell_viability_dn
914 CEETOX_H295R_TESTO_dn 1664 CEETOX_H295R_MTT_cell_viability_dn
915 CEETOX_H295R_TESTO_up 1664 CEETOX_H295R_MTT_cell_viability_dn
2037 CPHEA_Stoker_NIS_Inhibition_RAIU 2110 CPHEA_Stoker_NIS_Cytotoxicity
962 LTEA_HepaRG_CYP1A1_dn 1136 LTEA_HepaRG_LDH_cytotoxicity
963 LTEA_HepaRG_CYP1A1_up 1136 LTEA_HepaRG_LDH_cytotoxicity
1691 STM_H9_OrnCyssISnorm_ratio_dn 1858 STM_H9_Viability_norm
1690 STM_H9_OrnCyssISnorm_ratio_up 1858 STM_H9_Viability_norm
806 TOX21_AhR_LUC_Agonist 807 TOX21_AhR_LUC_Agonist_viability
767 TOX21_Aromatase_Inhibition 768 TOX21_Aromatase_Inhibition_viability
2047 TOX21_CAR_Agonist 2048 TOX21_CAR_Agonist_viabillity
2049 TOX21_CAR_Antagonist 2050 TOX21_CAR_Antagonist_viability

Cell Type Time Point Number of Active Chemicals Number of Inactive Chemicals
HepG2 24 hrs 846 5680

HEK293T 24 hrs 746 5813

Unused inactive

Inactive (60%)

Unbalanced dataset 
between active and 
inactive chemicals 

Unbalanced dataset 
between active and 
inactive chemicals 

Unbalanced dataset 
between active and 
inactive chemicals 

Unbalanced dataset 
between active and 
inactive chemicals 

Unbalanced dataset 
between active and 
inactive chemicals 

Active (40%) Training (80%) Test (20%)

Regression machine learning XGBoost and 
random forest.

Machine Learning Model Training Set R2 Test Set R2 10-fold Cross-Validation R2

XGBoost 0.77 0.61 0.56 +/- 0.22
Random Forest 0.76 0.58 0.49 +/- 0.21

Machine Learning Model Training Set R2 Test Set R2 10-fold Cross-Validation R2

XGBoost 0.81 0.57 0.45 +/- 0.18
Random Forest 0.77 0.46 0.43 +/- 0.25

• The relative potency of cytotoxicity vs. endpoint-specific bioactivity can provide context as to whether the 
bioactivity may be confounded by overt toxicity, and thus considered a nonselective effect.

 Figure 1. ToxCast assay bioactivity summary 
plot from US EPA’s CompTox Chemicals 
Dashboard (https://comptox.epa.gov/dashboard/) 
for 2,3,4,5-Tetrachloro-6-(trichloromethyl)pyridine 
(CASRN 1134-04-9) shows most bioactivity assay 
endpoint AC50 values are above the “burst” 
cytotoxicity limit values suggesting that overt 
toxicity drives most responses observed.

 Figure 2. Concentration-response curve
overlay from ICE (https://ice.ntp.niehs.nih.gov)
for bioactivity assay endpoint and its
concurrent accompanying cytotoxicity
readout revealing a more potent cytotoxic
effect (AC50 is point on curve).

Cytotoxicity Relative to Bioactivity

Figure 3. Machine learning workflow. To predict cell line, time point, an chemical-specific cytotoxicity 
AC50 concentrations that could be applied for contextualizing bioactivity assays in which there are no 
concurrent cytotoxicity assessments, machine learning approach was conducted.

Machine Learning Workflow to Predict Cytotoxicity

Cytotoxicity assays were retrieved from ICE cHTS by filtering for those marked as “burst” by EPA’s 
invitrodb v3.5. (91 assay endpoints).

1

Cytotoxicity assays were grouped by cell type and time point.
2

Per-chemical median AC50s were computed within each cytotoxicity assay group.
3

Chemicals were characterized by a set of molecular descriptors computed using RDKit (www.rdkit.org).
4

XGBoost and Random Forest models were tuned and developed with optimized parameters. 
5

Machine learning models were used to predict cytotoxicity AC50s for chemicals; predictions were 
specific to chemical, cell type, and time point. 
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• We have developed a tiered framework to integrate cytotoxicity with bioactivity assay endpoints 
enhancing the interpretation of in vitro assays and providing context for distinguishing between 
selective and confounded outcomes.

• Numerous chemicals elicit bioactivity in Tox21/ToxCast assay endpoints at AC50 concentrations 
higher than the cytotoxicity AC50s suggesting that those results may be non-specific secondary 
or cell stress-induced outcomes rather than specific bioactivity. 

• We have mapped concurrent cytotoxicity readouts for 492 assay 
endpoints, allowing direct comparison of bioactivity potency against 
cytotoxicity. These comparisons will be integrated into future versions 
of concentration-response visualizations for the curated HTS data in 
the ICE Curve Surfer tool.

• Cell type- and time point-specific machine learning models were developed to predict 
cytotoxicity AC50s to provide context for assays without concurrent cytotoxicity data. 

• Further refinement of our machine learning cytotoxicity predictive models is being conducted 
before they are integrated with bioactivity data to provide context and bolster confidence in 
assay outcome interpretation for identifying specific vs. non-specific/cytotoxicity-confounded 
bioactivities within these or other cell types.

785 bioactivity 
assay endpoints 

without concurrent 
cytotoxicity

Cytotoxicity Active Cytotoxicity Inactive
Bioactivity Endpoint Active 30,108 30,087

Bioactivity Endpoint Inactive 48,956 383,886

Figure 6. Difference between bioactive and 
concurrent cytotoxicity AC50s. Histogram of 
records where both bioactivity endpoint and 
cytotoxicity assay were active. The difference was 
computed as bioactivity AC50 minus cytotoxicity 
AC50. Negative values indicate "selective" 
bioactivity where bioactivity AC50 was less than 
cytotoxicity AC50 (18,069 records). Positive values  
indicate "non-specific" effects where bioactivity 
AC50 was greater than cytotoxicity AC50 (12,039 
records).

Table 5: Distribution of active/inactive for matched concurrent cytotoxicity
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