Next Generation Risk Assessment for Systemic Toxicity

Ans Punt Science leader PBK Ans.Punt@unilever.com

EPA Workshop on Probabilistic Methods for Health Assessments

The need for non-animal safety assessments

Societal Attitudes/Consumer Preference

Human Relevance

22.	2,2009	EN	Official Journal o	f the Euro	ean Union	L 342/5
	REG	GULATION (E)	C) No 1223/2009 OF THE EU	JROPEAN	PARLIAMENT AND OF THE COUN	CIL
			of 30 No	vember 2	009	
			on cosm	etic produ	icts	
			(1	recast)		
			(Text with	EEA relev	ince)	
THE PEA	EUROPEAN PA N UNION,	RLIAMENT AND	THE COUNCIL OF THE EURO-	(5)	The environmental concerns that subst metic products may raise are considered cation of Regulation (EC) No 1907/200	tances used in cos l through the appli 06 of the European
Hav nity	ing regard to th , and in particu	te Treaty establ lar Article 95 tl	ishing the European Commu- sereof,		Parliament and of the Council of 18 December 20 cerning the Registration, Evaluation, Authorisati Restriction of Chemicals (REACH) and establishing pean Chemicals Agency (4), which enables the asso	
Hav	ing regard to th	ie proposal fror	n the Commission,		or environmental salety in a cross-seco	nai manner.
Hav Soc	ing regard to t ial Committee (the opinion of ¹),	the European Economic and	(6)	This Regulation relates only to cosmetic products and to medicinal products, medical devices or biocdal put ucts. The delimitation follows in particular from detailed definition of cosmetic products, which refers I to their areas of application and to the purposes of t use.	
Act of t	ng in accordano 1e Treaty (²),	e with the proc	edure laid down in Article 251			
Wh	rreas:			(7)	The assessment of whether a product i uct has to be made on the basis of a c	s a cosmetic prod
(1)	Council Dir approximati cosmetic pro several occa	ective 76/768/I on of the laws o oducts (3) has b sions. Since fu	EC of 27 July 1976 on the the Member States relating to ren significantly amended on ther amendments are to be		ment, taking into account all characteris Cosmetic products may include creams, gels and oils for the skin, face masks, ti pastes, powders), make-up powders, a busienic nowders toilet coans deodora	enulsions, lotions nted bases (liquids fter-bath powders nt soans perfumes

Regulatory Changes (e.g. Cosmetics Regulation)

Archives of Toxicology (2023) 97:3075–3083 https://doi.org/10.1007/s00204-023-03601-5

REGULATORY TOXICOLOGY

Check for updates

Analysis of health concerns not addressed by REACH for low tonnage chemicals and opportunities for new approach methodology

Resource/time constraints

Philip Botham¹ · Mark T. D. Cronin² · Richard Currie¹ · John Doe² · Dorothee Funk-Weyer³ · Timothy W. Gant^{4,5} · Marcel Leist⁶ · Sue Marty⁷ · Senard van Ravenzwaay⁸ · Carl Westmoreland⁹

Received: 20 July 2023 / Accepted: 30 August 2023 / Published online: 27 September 2023 © The Author(s) 2023

NGRA: an exposure-led and hypothesis-driven approach for protective decision making

Rotroff, et al. Toxicological Sciences 117.2 (2010): 348-358.

If there is **no** bioactivity observed at consumerrelevant concentrations, there is unlikely to be any adverse health effects.

If there **is** bioactivity observed at consumerrelevant concentrations, follow up testing is required to determine whether that could result in an adverse effect

NGRA toolbox for systemic toxicity at Unilever

https://youtu.be/5Z2S8MnKp7g

Example exposure scenarios

Coumarin (flavouring and fragrance, naturally present in e.g. cinnamon)

DEET (insect repellent, PT19)

Compound	Use Scenario	Exposure route	Risk classification
Coumarin	Dietary intake, 4 mg/day	Oral	Low risk
DEET	15% in a sun Lotion	Dermal	Acceptable risk based on risk-benefit

Parameterisation of PBK models within a tiered risk assessment framework

Confidence

level

PBK parameterisation levels

Level 1: Chemical-specific parameters informed using in silico predictions (e.g., using e.g., QSAR models)

Level 2: Some chemical-specific parameters informed using *in vitro* data

Level 3: Some chemical-specific parameters are inferred by calibrating model against existing human PK data for the same chemical (by a different exposure scenario.

> ** While further refinement of the PBK model may not be possible, refinement of the bioactivity/POD estimates using higher tier tools (e.g., micro physiological systems) should be considered.

> Figure adapted from Moxon et al., 2020. Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. *Toxicology in Vitro*, 63, p.104746.

Example exposure scenarios

Coumarin (flavouring and fragrance, naturally present in e.g. cinnamon)

DEET (insect repellent, PT19)

Compound	Use Scenario	Exposure route	Risk classification
Coumarin	Dietary intake, 4 mg/day	Oral	Low risk
DEET	15% in a sun Lotion	Dermal	Acceptable risk based on risk-benefit

Example 1: exposure to coumarin through oral dietary intake

Parameter	Value	Source	Level
Molecular weight	147.1		
(g/mol)			
Log P	1.89	ADMET predictor	L1
	1.39	Measured ¹	L2
Hepatic intrinsic	105	ADMET predictor	L1
clearance (L/h)	929	Measured	L2
Unbound fraction in	0.24	ADMET predictor	L1
plasma (f _{up})			
	0.31	Measured ²	L2
Blood: plasma ratio	1.08	ADMET predictor	L1
	0.7	Measured ²	L2

- 1. Hansch, C., Leo, A., & Hoekman, D. (1995) *Exploring QSAR: Hydrophobic, electronic, and steric constants* (Vol. 2). American Chemical Society.
- 2. Moxon, T.E., et al (2020). Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. Toxicol In Vitro, 63, 104746

Example 1: exposure to coumarin through oral dietary intake (BER>1)

Example 1: exposure to coumarin through oral dietary intake

Parameter	Value	Source	Level
Molecular weight	147.1		
(g/mol)			
Log P	1.89	ADMET predictor	L1
	1.39	Measured ¹	L2
	\frown		
Hepatic intrinsic	105	ADMET predictor	L1
clearance (L/h)	929	Measured	L2
Unhound fraction in	0.24	ADMET prodictor	11
plasma (f _{up})	0.24	ADMET Predictor	LI
	0.31	Measured ²	L2
Blood: plasma ratio	1.08	ADMET predictor	L1
	0.7	Measured ²	L2

- 1. Hansch, C., Leo, A., & Hoekman, D. (1995) *Exploring QSAR: Hydrophobic, electronic, and steric constants* (Vol. 2). American Chemical Society.
- 2. Moxon, T.E., et al (2020). Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. Toxicol In Vitro, 63, 104746

(11)

Example 1: exposure to coumarin through oral dietary intake

Uncertainty quantification and decision making

Why do we care about quantifying uncertainty?

- In this example, using point estimates results in Cmax appearing below the POD (i.e., the BER>1).
- The true values of both metrics are subject to uncertainty.
- These uncertainties can be captured in terms of distributions.
- The distributions show the range of plausible values for the Cmax and POD.
- Quantifying uncertainty in quantities like Cmax and the POD can be helpful to determine when a safety decision can be made with confidence, or when more refinement is needed.

Bayesian modelling of the PBK Cmax error

2. Application for novel exposure scenarios or chemicals

Adding credible range to Exposure estimates

Unilever

Using different parameterisation levels with a tiered decision framework

Examples 2: dermal exposure to DEET (BER ≤ 1)

- For the dermal scenario, we would assign this as uncertain risk.
- It may be possible to refine the DEET dermal exposure scenario further at higher tier tools.

Evaluating the systemic safety toolbox across a wide range of chemicals and exposure scenarios

Selection of chemicals and exposure scenario

- Chemicals with well-defined human exposures
- Traditional safety assessment available

Chemical	Exposure scenario	Risk classification
Oxybenzone	2 scenarios: 0.5%; 2% sunscreen	Low risk
Caffeine	2 scenarios: 0.2% shampoo & coffee oral consumption 50 mg	Low risk
Caffeine	10g – fatal case reports	High risk
Coumarin	3 scenarios: 4 mg/d oral consumption; 1.6% body lotion (dermal); TDI 0.1 mg/kg oral	Low risk
Hexylresorcinol	3 scenarios: Food residues (3.3 ug/kg); 0.4% face cream; throat lozenge 2.4 mg	Low risk
ВНТ	Body lotion 0.5%	Low risk
Sulforaphane	2 scenarios: Tablet 60 mg/day; food 4.1-9.2 mg/day	Low risk
Niacinamide	4 scenarios: oral 12.5-22 mg/kg; dermal 3% body lotion and 0.1 % hair condition	Low risk
Doxorubicin	75 mg/m2 IV bolus 10 min; 21 days cycles; 8 cycles	High risk
Rosiglitazone	8 mg oral tablet	High risk
Paraquat	Accidental ingestion 35 mg/kg	High risk

10 chemicals – 25 exposure scenarios

BER=lowest POD/Plasma Cmax Blue: low risk chemical-exposure scenario Yellow: high risk chemical-exposure scenario

PBK Level 2, Blue shaded region BER> 11

Middleton et al (2022), *Tox Sci*, Volume 189, Issue 1, Pages 124-147

Evaluating the systemic safety toolbox across a wide range of chemicals and exposure scenarios

Low risk exposure scenarios are blue dots, high risk are yellow dots.

Chemical-exposure scenarios with a BER point estimate outside the blue-shaded region would be identified as "uncertain" risk under this decision model. The grey dashed line corresponds to BER = 1.

PBK Level	BER threshold	Empirical Protectiveness	Empirical Utility
1	110	6/6 (100%)	3/18 (17%)
2	11	6/6 (100%)	6/18 (33%)
3	2.5	5/5 (100%)	9/13 (69%)

Are these thresholds still protective if we increase the number and diversity of chemicals?

Middleton et al (2022), Tox Sci, Volume 189, Issue 1, Pages 124-147

Extended evaluation (38 more chemicals)

PBK Level	BER threshold	Empirical Protectiveness	Empirical Utility
1	110	43/46 (93%)	2/24 (8%)
2	11	43/46 (93%)	6/22 (27%)
3	2.5	44/46 (96%)	0/3 (0%)
Highest	-	44/46 (96%)	7/24 (29%)

- Chemical- Exposure scenarios not protective for:
 - Warfarin therapeutic oral dose
 - Trimellitic anhydride inhalation exposure
- Further research is being performed to explore additional relevant in vitro assays to be added the toolbox.

Discussion and next steps

- The systemic safety toolbox and workflow has been evaluated for a range of chemicals covering different exposure scenarios.
- Here, a key metric is the bioactivity exposure ratio, which uses:
 - the minimum POD
 - the Cmax
- PBK models can be refined as required by the risk assessment.
- A Bayesian statistical model has been used to quantify uncertainty the Cmax estimates.
- Various areas of ongoing research include:
 - Further work to quantify the PBK model errors.
 - Comparing the results of different PBK models/software.
 - Evaluating different in vitro assays and POD estimation approaches.

Acknowledgements

Unilever: Alistair Middleton, Maria Baltazar, Sophie Cable, Joe Reynolds, Georgia Reynolds, Beate Nicol, Sharon

Scott, Sophie Malcomber, Annabel Rigarlsford, Katarzyna Przybylak, Predrag Kukic, Dawei Tang, Matthew Dent,

Andrew White, Paul Carmichael, Sarah Hatherell, Richard Cubberley, Carl Westmoreland

US-EPA: Richard Judson, Josh Harrell, Logan Everett, Imran Shah, Joseph Bundy, Laura Taylor, Jacob Fredenburg, John Wambaugh

