

Application of the Stochastic Human Exposure and Dose Simulation (SHEDS) probabilistic multimedia aggregate exposure model for lead in soil and dust

EPA-NICEATM Workshop on Advancing Quantitative Analysis in Human Health Assessments through Probabilistic Methods

Rogelio Tornero-Velez (EPA/ORD/CCTE) in collaboration with EPA/ORD SHEDS-Pb Team

Disclaimer: This presentation is for U.S. Government Agency use only. It has been reviewed by the U.S. Environmental Protection Agency, Office of Research and Development.

ACKNOWLEDGMENTS

- Valerie G. Zartarian, Jianping Xue, Emily Gibb-Snyder, Jessica J.
 Frank, Lindsay W. Stanek
- James Brown, guidance on Pb biokinetics, IEUBK
- Managers, peer review and QA staff, contractors
- HUD collaborators
- External peer reviewers

Lead (Pb) Exposures have been Trending Downwards

Data: Centers for Disease Control and Prevention, National Center for Health Statistics and National Center for Environmental Health, National Health and Nutrition Examination Survey https://www.epa.gov/ace/biomonitoring-lead

Lead Poisoning Prevention Policies

- Historical regulatory actions driving down Pb
- Federal Lead Action Plan
 <u>https://www.epa.gov/lead/federal-action-plan-reduce-childhood-lead-exposure</u>
- Bipartisan Infrastructure Law <u>https://www.epa.gov/infrastructure/water-infrastructure-investments</u>
- EPA Strategy to Reduce Pb Exposure and Disparities in U.S. Communities
 <u>https://www.epa.gov/system/files/documents/2022-11/Lead%20Strategy_1.pdf</u>

Presented at Society of Toxicology Workshop

Get the Lead Out: The Persistent Problem of Lead Exposure from Soil, Dust, and Water SOT San Antonio, March 13, 2018

Assistance Requests to EPA/ORD

EPA/OW request to determine drinking water Pb concentrations to keep children's blood levels below specified levels

Research

A Section 508–conformant HTML version of this article is available at https://doi.org/10.1289/EHP1605.

Children's Lead Exposure: A Multimedia Modeling Analysis to Guide Public Health Decision-Making

Valerie Zartarian,¹ Jianping Xue,¹ Rogelio Tornero-Velez,¹ and James Brown¹

¹U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA

BACKGROUND: Drinking water and other sources for lead are the subject of public health concerns around the Flint, Michigan, drinking water and East Chicago, Indiana, lead in soil crises. In 2015, the U.S. Environmental Protection Agency (EPA)'s National Drinking Water Advisory Council (NDWAC) recommended establishment of a "health-based, household action level" for lead in drinking water based on children's exposure.

OBJECTIVES: The primary objective was to develop a coupled exposure-dose modeling approach that can be used to determine what drinking water lead concentrations keep children's blood lead levels (BLLs) below specified values, considering exposures from water, soil, dust, food, and air. Related objectives were to evaluate the coupled model estimates using real-world blood lead data, to quantify relative contributions by the various media, and to identify key model inputs.

METHODS: A modeling approach using the EPA's Stochastic Human Exposure and Dose Simulation (SHEDS)-Multimedia and Integrated Exposure Uptake and Biokinetic (IEUBK) models was developed using available data. This analysis for the U.S. population of young children probabilistically simulated multimedia exposures and estimated relative contributions of media to BLLs across all population percentiles for several age groups.

RESULTS: Modeled BLLs compared well with nationally representative BLLs (0–23% relative error). Analyses revealed relative importance of soil and dust ingestion exposure pathways and associated Pb intake rates; water ingestion was also a main pathway, especially for infants.

CONCLUSIONS: This methodology advances scientific understanding of the relationship between lead concentrations in drinking water and BLLs in children. It can guide national health-based benchmarks for lead and related community public health decisions. https://doi.org/10.1289/EHP1605

Zartarian, V., Xue, J., Tornero-Velez, R. and Brown, J., 2017. Children's lead exposure: A multimedia modeling analysis to guide public health decision-making. *Environmental health perspectives*, *125*(9), p.097009.

EPA/OCSPP/HUD.gov request to determine residential Pb in soil and dust concentrations to keep children's blood levels below specified levels

Science of the Total Environment 905 (2023) 167132

Children's lead exposure in the U.S.: Application of a national-scale, probabilistic aggregate model with a focus on residential soil and dust lead (Pb) scenarios

V.G. Zartarian^a, J. Xue^b, E. Gibb-Snyder^{a,*}, J.J. Frank^c, R. Tornero-Velez^d, L.W. Stanek^a

^a U.S. Environmental Protection Agency. Office of Research and Development. Center for Public Health and Environmental Assessment, United States of America ^b Retired, formerly U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, United States of America

^c U.S. Environmental Protection Agency, Office of Research and Development, Office of Science Advisor, Policy, and Engagement, United States of America ^d U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, United States of America

Zartarian, V.G., Xue, J., Gibb-Snyder, E., Frank, J.J., Tornero-Velez, R. and Stanek, L.W., 2023. Children's lead exposure in the US: Application of a national-scale, probabilistic aggregate model with a focus on residential soil and dust lead (Pb) scenarios. *Science of the Total Environment*, *905*, p.167132.

SHEDS Probabilistic Aggregate Exposure Modeling Approach

(Stochastic Human Exposure and Dose Simulation)

Determine max. daily average soil, dust, and soil and dust that could keep BLL below reference values

'Roughly' Use SHEDS-Multimedia as Probabilistic Input to the Integrated Exposure Uptake Biokinetic Model for Lead (Pb) in children (IEUBK)

https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals#overview

6

6

SHEDS-Multimedia Provided Probabilistic Input to IEUBK

IEUBK SOIL & DUST GUI (intakes & levels)	Dietary Lead Intake (ug/day) X Dietary Absorption Fraction = Available Lead Intake (ug/day)	
Soil/Dustingestion Weighting Factor (percent soil): 45 OK Outdoor Soil Lead Concentration (µg/g) Indoor Dust Lead Concentration (µg/g) Cancel © Constant Value 200 Reset © Variable Values Wultiple Source Analysis Set	Water Intake (L/day) X Lead Water Conc (ug/L) X Water Abs Fraction = Available Lead Intake (ug/day)	
Multiple Source Avg: 150 Soil/Indoor Dust Concentration (µg/g) AGE (Years) 0-1 1-2 2-3 3-4 4-5 5-6 6-7 Outdoor Soil Lead Levels: 200 200 200 200 200 200 150 Indoor Dust Lead Levels: 150 150 150 150 150 150	Soil Intake (g/day) X Lead Soil Conc (ug/g) X Soil Abs Fraction = Available Lead Intake (ug/day)	
Amount of Soil/Dust Ingested Daily (g/day) AGE (Years) 0-1 1-2 2-3 3-4 4-5 5-6 6-7 Total Dust • Soil Intake: 0.085 0.135 0.135 0.130 0.090 0.085 GI Values/Bioavailability TRW Homepage: Interval Interval Interval Interval	Dust Intake (g/day) X Lead Dust Conc (ug/g) X Dust Abs Fraction = Available Lead Intake (ug/day)	
GI/Bio Change Volues http://www.eps.gov/superfund/heelth/conteminants/lead/index.htm	$\sum \left[SHEDS_{pathway} \left(\frac{\mu g}{day} \right) X ABS_{pathway} \right] \longrightarrow \left[\begin{array}{c} \text{Total GI Available Lead Intake} \\ (ug/day) \end{array} \right]$	
GI Values/Bioavailability Information ? ×	(1) Convert distribution of available intakes (ug/day) to age-specific untakes	

uistribution of available intakes (µg/day) to age-specific uptakes COnvert (\mathbf{T}) (µg/day)

(2) Apply age-specific regression equations to relate uptakes to blood lead levels $(\mu g/dL)$

ABSORPTION

FRACTION PERCENT

30

MEDIA

Soil

Water

Diet Alternate Access alternate bioavailability
 No OYes

TBW Homenane: http://www.epa.gov/superfund/health/contaminants/lead/index.htm

100

parameters?

OK

Cancel

Reset

Help?

IEUBK Regression Fits by Age (month)

Blood Pb (μ g/dL) = β_0 + β_1 Uptake + β_2 Uptake² + β_3 Uptake³ + e R2~ 0.999

IEUBK					
Age					
Interval	Age				
(year)	(months)	βo	β1	β2	β3
0.5 - 1	7	1.65E-02	5.76E-01	-0.00153335	8.15E-06
0.5 - 1	8	1.23E-02	5.61E-01	-0.001399098	6.82E-06
0.5 - 1	9	7.86E-03	5.47E-01	-0.001307607	6.01E-06
0.5 - 1	10	7.34E-03	5.33E-01	-0.001183272	4.98E-06
0.5 - 1	11	4.30E-03	5.20E-01	-0.001083946	4.22E-06
0.5 - 1	12	2.25E-03	5.08E-01	-0.001015513	3.81E-06
1-2	13	2.42E-03	5.06E-01	-0.000951316	3.28E-06
1-2	14	2.04E-03	4.95E-01	-0.000858982	2.59E-06
1-2	15	2.96E-03	4.82E-01	-0.00079005	2.25E-06
1-2	16	1.10E-03	4.69E-01	-0.000739067	2.03E-06
1-2	17	2.27E-03	4.57E-01	-0.000676297	1.70E-06
1-2	18	-3.11E-04	4.47E-01	-0.000637203	1.53E-06
1-2	19	2.41E-03	4.37E-01	-0.00058901	1.26E-06
1-2	20	-1.18E-03	4.30E-01	-0.00058145	1.35E-06
1-2	21	7.61E-04	4.21E-01	-0.000532441	1.06E-06
1-2	22	5.65E-04	4.14E-01	-0.000514162	1.04E-06
1-2	23	-1.68E-03	4.08E-01	-0.000498463	9.98E-07
1-2	24	2.72E-04	4.03E-01	-0.0004837	9.56E-07
2 - 3	30	1.23E-03	3.79E-01	-0.000429113	8.45E-07
3 - 4	42	6.58E-04	3.55E-01	-0.000370716	6.24E-07
4 - 5	54	6.36E-04	3.36E-01	-0.000337753	5.44E-07
5 - 6	66	1.65E-03	3.13E-01	-0.00027834	3.57E-07
6 - 7	78	1.32E-04	2.88E-01	-0.000230444	3.08E-07

Single month chosen as representative for each age interval

interval	month
0 – 0.5	3
0.5 - 1	9
0 - 1	6
1 - 2	18
2 - 3	30
3 - 4	42
4 - 5	54
5 - 6	66
6 - 7	78

EPA/OW 2017 https://ehp.niehs.nih.gov/doi/full/10.1289/EHP1605

EPA/OCSPP/HUD.gov request to determine residential Pb soil and Pb dust concentrations to keep children's blood levels below specified levels

- Applied EPA's probabilistic, national-scale aggregate lead (Pb) model: SHEDS-Pb
- Used updated model inputs (e.g. AHHS II data from HUD) and scenarios of interest to HUD and EPA
- Considered 15 combinations of input data sources; focused on 2 scenarios *a priori*
- Objective -- conduct 4 types of analyses:
 - 1) determine estimated BLLs of children based on aggregate exposures for specified nationally representative background Pb concentrations in multiple environmental media
 - 2) compare results from 1) vs. CDC NHANES 2009-2016 BLLs for model evaluation
 - determine the level of Pb in residential soil and dust that can result in a given percentage of children below a specified BLL(s), considering aggregate multimedia Pb exposures
 - 4) calculate the soil and dust increment for one unit increase in BLLs (2.5 to 3.5 μg/dL or 4 to 5 μg/dL) for soil-only, dust-only and aggregate Pb exposure scenarios

€ FPA	Scenario	Background Soil and Dust Pb Concs.	Background Drinking Water Pb	Dust Loading to Concentration	Soil and dust
United States			Concentrations	(LTC) Conversion	ingestion rates
Environmental Protection Agency	2022 Initial – S0	AHHS 1 – First American Healthy Homes	Second Six-Year Review of Existing	Pb NAAQS Risk and Exposure	Ozkaynak et al. 2011
		Survey (HUD, 2011)	National Primary Drinking Water	Assessment (EPA, 2007)	
			Regulations- 6YR-2° (EPA, 2010)		
Model	2022 Sensitivity	AHHS I *	Second Six-Year Review of Existing	Bevington et al., 2021 model #16	Ozkaynak et al. 2022
	Analyses – S1		Regulations		
Scenarios and	52	AHHSI	Second Six-Year Review of Existing	Ph NAAOS Risk and Exposure	Ozkavnak et al. 2022
Data Sauraaa			National Primary Drinking Water	Assessment	
Data Sources			Regulations		
AHHS I: 1146 homes 101 PSU	S3	AHHS II ^b - Second American Healthy Homes	Fourth Six-Year Review of Existing	Pb NAAQS Risk and Exposure	Ozkaynak et al. 2022
(2005 - 2006)		Survey (HUD, 2021)	National Primary Drinking Water	Assessment	
AHHS II : 700 homes 78 PSU			Regulations – 6YR-4 ^d (EPA, 2022b)		
(2018 - 2019)	S4	AHHS II	Fourth Six-Year Review of Existing	Bevington et al., 2021 model #16	Ozkaynak et al. 2022
(2010 2013)			National Primary Drinking Water		
Soil Ph concentrations			Regulations		
Dust Pb loadings	S5	AHHS II	AHHS II (Bradham et al., 2022)	Pb NAAQS Risk and Exposure	Ozkaynak et al. 2022
				Assessment	
	S6	AHHS II	AHHS II	Bevington et al., 2021 model #16	Ozkaynak et al. 2022
	S7	AHHS I + AHHS II	AHHS II	Bevington et al., 2021 model #16	Ozkaynak et al. 2022
	- S8	AHHS I + AHHS II	AHHS II	Pb NAAQS Risk and Exposure	Ozkaynak et al. 2022
Fourth Six-Year Review:				Assessment	
data provided by	S9	AHHS I + AHHS II	AHHS II	Pb NAAQS Risk and Exposure	von Lindern et al. 2016
states/primacy agencies				Assessment	
through the Information	S10	AHHS I + AHHS II	AHHS II	Bevington et al., 2021 model #16	von Lindern et al.
Collection Request (ICR) for					2016
Six-Year Review 4 covering	S11	AHHS I + AHHS II	AHHS II	Pb NAAQS Risk and Exposure	Exposure Factor
from January 2012 through				Assessment	Handbook 2017 (US
December 2019.					EPA, 2017b)
	S12	AHHS I + AHHS II	AHHS II	Bevington et al., 2021 model #16	Exposure Factor
					Handbook 2017
	S13	AHHS I + AHHS II	Fourth Six-Year Review of Existing	Bevington et al., 2021 model #16	Ozkaynak et al. 2022
			National Primary Drinking Water		
	61.4		Regulations		
	514	same as S7 with new SHEDS-IEUBK linkage			
		regression equation based on IEUBKv2			
10	S15	same as S13 with new SHEDS-IEUBK linkage			
10		regression equation based on IEUBKv2			

Model Evaluation Results

Simple statistics for all scenario simulation results, 1 to <2-year-olds

										Percentag than the	e higher e level
Scenario	Sample size	mean	std	median	75th	95th	97.5th	gm	gsd	3.5 ug/d	5 ug/dl
NHANES BLL	641	1.42	1.35	1.03	1.67	3.65	5.54	1.09	1.99	7.0	3.0
S0	3000	1.27	1.25	0.94	1.53	3.17	4.36	0.98	2.01	5.8	1.9
S1	3000	1.58	1.19	1.26	1.92	3.81	4.80	1.29	1.88	9.8	2.1
S2	3000	1.34	1.23	1.03	1.63	3.21	4.23	1.05	1.97	5.9	1.8
S3	3000	1.21	0.98	0.94	1.46	2.96	3.60	0.97	1.91	4.8	0.9
S4	3000	1.44	1.16	1.12	1.80	3.44	4.58	1.16	1.91	7.4	1.8
S5	3000	1.12	0.95	0.87	1.36	2.66	3.47	0.90	1.91	3.5	0.7
S6	3000	1.34	1.06	1.04	1.64	3.29	4.05	1.07	1.94	6.3	1.5
S7	3000	1.39	1.21	1.07	1.67	3.34	4.28	1.10	1.94	6.7	1.7
S8	3000	1.15	0.92	0.91	1.39	2.71	3.52	0.92	1.92	4.0	0.8
S9	3000	1.81	1.98	1.24	2.06	5.19	6.80	1.33	2.09	13.4	5.3
S10	3000	2.24	2.25	1.59	2.61	6.12	8.07	1.67	2.06	19.8	7.8
S11	3000	1.76	1.81	1.21	2.01	4.98	6.75	1.30	2.09	13.0	5.0
S12	3000	2.15	2.08	1.53	2.49	5.72	8.07	1.62	2.03	18.2	7.0
S13	3000	1.45	1.12	1.13	1.77	3.43	4.26	1.17	1.89	7.7	1.5
S 14	3000	1.42	1.12	1.11	1.74	3.62	4.63	1.13	1.94	7.6	1.8
S 15	3000	1.47	1.15	1.15	1.77	3.59	4.44	1.19	1.89	8.1	1.6

S14=S7 S15=S13 with newIEUBK regression coefficients

EPA/ OCSPP/HUD.gov https://doi.org/10.1016/j.scitotenv.2023.167132

Model Evaluation Results

Relative errors (%) for all scenario simulations, 1 to <2-year-olds

		Relative errors (%)							
Scenario	sample size	mean	50th	92.5th	95th	97.5th	gm	Mid	high
S0	3000	-10	-9	-4	-13	-21	-11	10	13
S1	3000	11	22	20	4	-13	18	17	12
S2	3000	-6	0	0	-12	-24	-4	3	12
S3	3000	-15	-8	-7	-19	-35	-11	12	20
S4	3000	2	9	7	-6	-17	6	5	10
S5	3000	-21	-15	-18	-27	-37	-18	18	28
S6	3000	-6	1	2	-10	-27	-2	3	13
S7	3000	-2	4	4	-8	-23	1	3	12
S8	3000	-19	-12	-14	-26	-37	-16	16	25
S9	3000	27	20	47	42	23	22	24	37
S10	3000	58	54	84	68	46	54	56	66
S11	3000	24	17	52	36	22	19	20	37
S12	3000	51	48	74	57	46	49	50	59
S13	3000	2	10	9	-6	-23	7	6	13
S14	3000	0	8	10	-1	-16	4	4	9
S15	3000	4	12	12	-2	-20	9	8	11

EPA/ OCSPP/HUD.gov https://doi.org/10.1016/j.scitotenv.2023.167132

Results for maximum daily average household Pb concentrations (ppm) that could keep BLL below specific reference values for Scenario 7

Age group		BLL: 3.5 µg/dL	BLL: 3.5 µg/dL	BLL: 5 µg/dL	BLL: 5 µg/dL	
		95th percentile	97.5th percentile	95th percentile	97.5th percentile	
1 to<2y-old						
	dust	160	140	240	210	
	soil	90	70	220	180	
	dust & soil	300	210	530	380	
2 to<6y-old						
	dust	140	110	210	150	
	soil	120	80	220	160	
	dust & soil	290	210	470	340	

EPA/ OCSPP/HUD.gov https://doi.org/10.1016/j.scitotenv.2023.167132

Strengths

• SHEDS-Pb can estimate children's BLLs over the range of all population percentiles for multiple children's age groups. Sensitivity analyses can identify key factors, media, and exposure pathways. The modeled BLL results compared well with children's NHANES BLLs for the numerous sensitivity analysis scenarios conducted.

Limitations

- SHEDS-Pb does not capture scenarios of extremely high exposure (e.g., children with pica behavior) because other behavioral factors related to soil Pb and dietary intake (i.e., home or community gardening and homesteading, hunting with Pb-based ammunition, and/or subsistence practices) are not captured.
- Insufficient data to implement 2-stage Monte Carlo

ACKNOWLEDGMENTS

- Valerie G. Zartarian, Jianping Xue, Emily Gibb-Snyder, Jessica J.
 Frank, Lindsay W. Stanek
- James Brown, guidance on Pb biokinetics, IEUBK
- Managers, peer review and QA staff, contractors
- HUD collaborators
- External peer reviewers

REFERENCES

- Bevington, C., Gardner, H.D., Cohen, J., Henning, C. and Rasmussen, P.E., 2021. Relationship between residential dust-lead loading and dust-lead concentration across multiple North American datasets. *Building and Environment*, *188*, p.107359.
- Bradham, K.D., Nelson, C.M., Sowers, T.D., Lytle, D.A., Tully, J., Schock, M.R., Li, K., Blackmon, M.D., Kovalcik, K., Cox, D. and Dewalt, G., 2023. A national survey of lead and other metal (loids) in residential drinking water in the United States. *Journal of exposure science & environmental epidemiology*, *33*(2), pp.160-167.
- Özkaynak, H., Glen, G., Cohen, J., Hubbard, H., Thomas, K., Phillips, L. and Tulve, N., 2022. Model based prediction of age-specific soil and dust ingestion rates for children. Journal of Exposure Science & Environmental Epidemiology, 32(3), pp.472-480.
- Sowers, T.D., Nelson, C.M., Blackmon, M.D., Li, K., Jerden, M.L., Kirby, A.M., Kovalcik, K., Cox, D., Dewalt, G., Friedman, W. and Pinzer, E.A., 2024. United States house dust Pb concentrations are influenced by soil, paint, and house age: insights from a national survey. *Journal of Exposure Science & Environmental Epidemiology*, pp.1-9.
- von Lindern, I., Spalinger, S., Stifelman, M.L., Stanek, L.W. and Bartrem, C., 2016. Estimating children's soil/dust ingestion rates through retrospective analyses of blood lead biomonitoring from the Bunker Hill Superfund Site in Idaho. *Environmental health perspectives*, *124*(9), pp.1462-1470.
- U.S. EPA, 2017. Updates to the EPA Exposure Factors Handbook. https://www.epa.gov/ expobox/about-exposure-factors-handbook.
- U.S. EPA, 2021. IEUBK Lead Model Version 2.0 Build 1.64 (2021). viewed 09/02/2022. https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals.
- U.S. EPA, 2022. Analysis of Occurrence Data From the Fourth Six-year Review of Existing National Primary Drinking Water Regulations. Office of Groundwater and Drinking Water
- Zartarian, V., Xue, J., Tornero-Velez, R. and Brown, J., 2017. Children's lead exposure: A multimedia modeling analysis to guide public health decision-making. *Environmental health perspectives*, 125(9), p.097009.
- Zartarian, V.G., Xue, J., Gibb-Snyder, E., Frank, J.J., Tornero-Velez, R. and Stanek, L.W., 2023. Children's lead exposure in the US: Application of a national-scale, probabilistic aggregate model with a focus on residential soil and dust lead (Pb) scenarios. *Science of the Total Environment*, 905, p.167132.