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Human Equivalent Dose/Concentration (HED/HEC): Human

| ﬂt rO d u Ct | O n/ B a C kg rO u n d concentration (inhalation, ppm) or dose (oral, mg/kg) of a substance

expected to induce the same magnitude of toxic effect for a human as
that observed for lab animals exposed to a known concentration or dose

Fixed (average) parameter values — point-estimate HEDs: ignores variability.

Probabilistic framework proposals assume that some risk distributions are
lognormally distributed (NRC, WHO IPCS-International Program on Chemical Safety).

Parameter distributions are also commonly described as lognormal or normal (justification
for shape not supported by data, Crump et al. 2010).

We generated HEDs using various sets of assumptions about input parameter
distributions to then characterize HED distributions using two PBPK models: DCM
(U.S. EPA IRIS Report, 2011) and chloroform (CF) (Sasso et al., 2013).

How are HED distributions affected by different assumptions about underlying PBPK
model parameter distributions?

Do model parameter distribution shapes and/or bounds significantly affect the shapes of
HEDs?

When data are limited, how can we identify the parameters most influential to the
HEDs?
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Introduction/Background

W

Human Equivalent Dose/Concentration (HED/HEC): Human
concentration (inhalation, ppm) or dose (oral, mg/kg) of a substance
expected to induce the same magnitude of toxic effect for a human as
that observed for lab animals exposed to a known concentration or dose
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Methods: Chemicals & Dosing Patterns for Humans

DC |V| |V| Od e Exposure | Dose Amount of Exposure interval Inhalation
~ Route Structure dose given (hours dosed) e
ir GST cYpP 7| exchange [ 7
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Methods: HED Calculation & Vionte Carlo Methods

. e ~ Internal dose metric: Measurement to
Animal internal /COmpare HED distributions ) describe internal kinetics of a substance
Animal dose Human -How close are the medians? following an external dose.
external metric/scaling Equivalent Iq How close are the extreme DCM: mg/L/d metabolized by liver-CYP.
dose factor Dose percentiles? Chloroform: mg/L/d metabolized by kidney.
\_ ) \_ ) \-Are they lognormal? Y,

...........>

Parameter Distributions with Same u and o

b

“Original Set” distributions are
from U.S. EPA (2011) for DCM and
Tan et al. (2006) for CF, and are
combinations of truncated normal,
ognormal and custom, non-
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[
Compare HED distributions
1. How close are the medians? How close

are the extreme percentiles? 1. Compare the HED distribution
) across each parameter distributio

2. Are they lognormal?

.

5t 50t 951 percentiles » Find pairwise % difference.

» Find maximum difference of pair
difference (MPPD).

2. Test HED distributions for lognorma

5. Untruncated /
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]‘— ) » How much do they deviate from
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Methods: Finding the most Influential Parameters

» Sensitivity analysis: methods to determine how the uncertainty in the output c
mathematical model can be attributed to different sources of uncertainty in its
inputs/parameters (Sensitivity analysis and PBPK: Evans, 2001; Hsieh, 2018; Mc

» Local — One-at-a-time (OAT) methods that perturb parameters
around nominal values.

» Simple to implement and inexpensive but can be misleading if there
are non-negligible interactions among multiple parms or nonlinear
processes.

» Global — calculates the contribution of a parameter over the entire
parameter space.

» Examples: Morris Screening, Sobol’ Indices.

» Variance-based methods find the percentage to output variance
contributed by:

» Each parameter alone

» Each parameter’s interactions
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Results: MIPPD values — How did HEDs Difter?

Inhaled chloroform (10 ppm) Inhaled DCM (50 ppm)

RPRRR 25.0.20.3/135 114 60 170203229/ 121 9.4 7.4 52 POANLE
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Results: Departure from lognormality

Inhaled chloroform (10 ppm)
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DCM HEDs deviated more from lognormality
(V' > 2).

HEDs derived from inhaled doses conformed
more to lognormality than oral doses.

Deviations from lognormality are due to
extreme percentiles/long tails.

Long tails result from extreme values for
influential parameters...
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Results: ...Which Influential Parameters?

*Influential parameters: parameters for which more
accurate representations of parameter uncertainty
and variability may be important.

» Global sensitivity analysis reveals the most influential
parameters* for the output: amount oral DCM metabolized
in the liver.
» Total effects: % contribution to the output variation.
» Skewed/Low HEDs can result from individuals simulated ’gmo'
with: g
» Very low liver volume. i
» Very high cardiac output. % o0
» Skewed/high HEDs (tails) can result from: % -
» Low cardiac output. (ECE

» Low metabolism rate.

Notice that PB (blood:air PC) and non-listed parameters
have very little effect on HED distributions (in this case!).

pe
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Parameters that account for ~100% of To
Fractional tissue volumes (liver, fat, slow

cardiac output

Cumulative sum of
effects with and
without interactions

Sobol’ Indices - Globally
influential parameters

I Main Effects
I Interaction Effects
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DEELEEEEEE  » Influence of parameters depends on the

6 mg/kg

Main + Interactions)
ﬂ
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BW  Body mass . .
S dose metric being tested, route of oral DCM
.
VEC Fat exposure, & chemical/compound group. i
VLC Liver . . _ E B Main Effects
» Kidney parameters influence kidney dose 5 25- Bl Interaction Effects
VKCTXC Kidney cortex ) =
VKMEDC  Kidney Medulla metrics, etc. ° II.
1 . . . . . O- . 1 1 1 1 1
MCIEE S ity Y P » Respiration rate influences inhalation cases. GOGOGEEZOAOE D
alc Liver flow rate » Some parameters may be more influential in = _ 100-
QKCTXC  Cortex flow rate relation to metabolically active compounds g
Qce Cardiac output (such as VOCs) than other chemical classes. 27
QPC/VPR  Respiratio pa .
— g inhaled CF

» Dose is also a factor (linear vs nonlinear

VMAXC, KM,  Metabolic parameters effects).
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N
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Note: Schacht et al. (2024) only considered 2 PBPK models/2 dose
U.s. Environmental Protection Agency | Metrics/2 routes of exposure — influential/important parameters
may differ for other models/dose metrics/routes of exposure!




Discussion/Conclusion — Takeaway Messages

» The distribution types™ (i.e. truncated normal & lognormal,
untruncated lognormal, and uniform) used to represent
uncertainty/variability in human parameter values:

» Have little impact on the central tendencies of the HED distributions.
» Do impact extreme percentiles of HED distributions.

*parameter distributions have the same mean and variance.
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» Tails in HEDs are more responsive to changes in extreme
qguantiles of input parameters.

» Thus, it is important to get accurate estimates of these parameter
distribution’s highest and lowest values (i.e., most sensitive populations).

» Consider the accuracy of the distribution, not just its “family”.

» Lognormality of HED distributions is scenario-dependent.
» Chloroform/amount metabolized in kidney & inhalation routes — = LN.
» DCM/amount metabolized in liver & oral routes — deviations. ¥
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Not all parameters are created equal

» Predictions of dose metrics/HEDs (central estimates or extreme
percentiles) can be greatly improved by having precise knowledge about
certain input parameter distribution shapes & variances (but not all).

» Some input parameters will have little/no effect on predictions of central
estimates/extreme percentiles.

» Schacht et al. (2024) discussed the input parameters or situations for
which it is important to allocate time and resources to collect data to
develop more accurate representations of parameter uncertainty and
variability.

» Some parameters exert more influence on certain outputs than others.

» When parameter data is limited, sensitivity analysis may be used to identify the
parameters for which accurate estimates are most important.
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