₽EPA

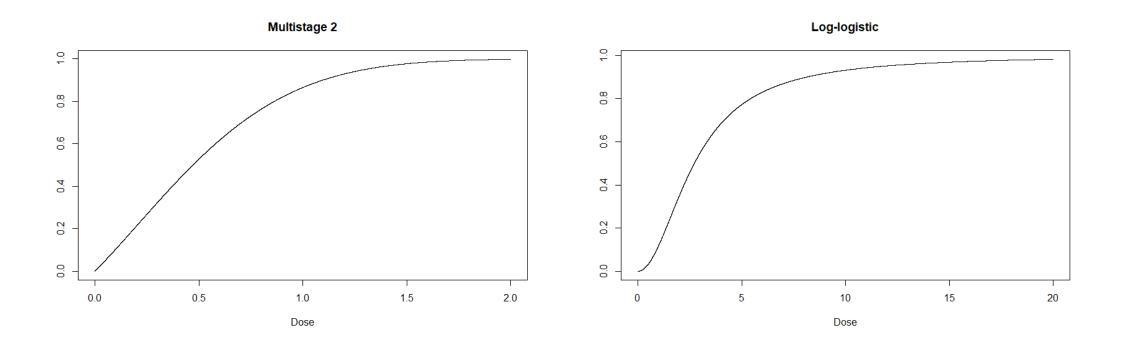
Case Study: Application of Dose-Response Model Averaging to Chloroform

By Todd Blessinger Workshop: Advancing Quantitative Analysis in Human Health Assessments through Probabilistic Methods 10/08/24

Office of Research and Development Center for Public Health and Environmental Assessment

• Disclaimer: The views expressed in this presentation are those of the author and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency.

- Case study summary
- Prior distributions
- Examples of model averaging applied to selected chloroform endpoints
- Sensitivity analysis


- To ground the evaluation of model averaging in current efforts, this case study uses datasets being considered in an in-development draft IRIS¹ toxicological review of chloroform-inhalation.
- Bayesian model averaging was applied to a collection of dichotomous endpoints from chloroform animal studies.
- Constructing model weights was done using a Laplace approximation, as included in BMDS² (Wheeler et al., 2020).
- Analysis done in the R package ToxicR.
- Both the BMDS priors (v 3.3) and ToxicR priors were applied.
- Sensitivity analysis conducted by varying the priors with higher and lower variance.

Models and Prior Distributions

• Models included for model averaging:

SFPA

• Quantal-linear, multistage (degree 2), Weibull, gamma, dichotomous Hill, logistic, log-logistic, probit, log-probit

Models and Prior distributions

- All parameter prior distributions had the form normal or lognormal.
- Example: Priors for log-logistic model in BMDS and ToxicR

$$p(x) = g + \frac{1-g}{1 + \exp[-\alpha - \beta \log x]}$$

Distribution	Parameter	Mean ^a	SD ^a
Normal	g^{b}	0	2
Normal	α	0	1
Lognormal	β	0.69315	0.5

^aFor the lognormal prior, values are the log-mean and log-SD. ${}^{b}logit(g)$ has normal prior.

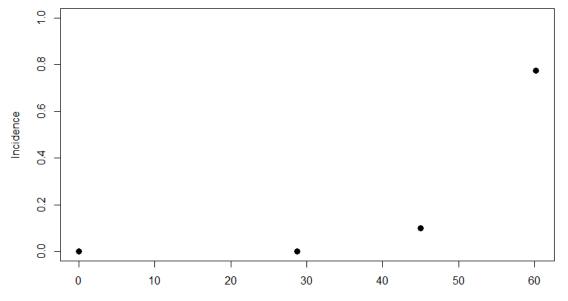
FPA

©EPA Prior distributions

• Example: Priors for Weibull model in BMDS and ToxicR

$$p(x) = g + (1-g)[1 - \exp(-\beta x^{\alpha})]$$

Distribution	Parameter	BMDS Mean ^a	BMDS SD ^a	ToxicR Mean ^a	ToxicR SD ^a
Normal	$g^{ extsf{b}}$	0	2	0	2
Lognormal	β	0.69315	0.42426	0.42426	0.5
Lognormal	α	0	1	0	1.5


^aFor the lognormal priors, values are the log-mean and log-SD. ^blogit(g) has normal prior.

• BMDS and ToxicR mostly yielded similar results.

• Dose-response data:

Internal dose (mg/L-d)	0	28.7	45.0	60.2
Response	0 / 50	0 / 50	5 / 50	38 / 49

Dose

Model average results from ToxicR (BMDS priors)

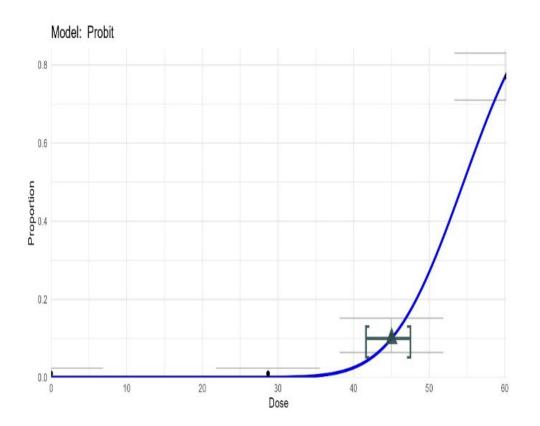
Model	BMD (BMDL, BMDU)	Pr(M Data)
Probit	41.95 (38.00 ,45.01)	0.488
Log-Probit	44.00 (40.40 ,46.91)	0.428
Weibull	46.02) <i>,</i> 46.03 (37.93	0.037
Log-Logistic	43.15 (39.16 ,46.41)	0.033
Hill	43.16 (39.27 <i>,</i> 46.30)	0.013
Logistic	,42.10 <i>,</i> 38.48 (33.97	0.001
Quantal-Linear	13.22 (10.32 ,17.37)	0.000
Multistage	(21.69, 17.70 (13.66)	0.000
Gamma	,37.92 <i>,</i> 33.11 (27.15	0.000

Model Average BMD: 42.90 (38.60, 46.23) 90.0% CI

• BMD results:

Method	BMD (mg/L-d)	BMDL (mg/L-d)
Maximum likelihood (probit)	45.0	41.8
Model average (BMDS priors)	42.9	38.6ª

^aModel average BMDL is 8% lower than maximum likelihood BMDL.



8.0

0.0

10

Model : Dichotomous MA, Fit type : Laplace

0.6 0.0 0.4 0.2

Model average (Bayesian)

30

Dose

40

50

60

20

Single model (maximum likelihood)

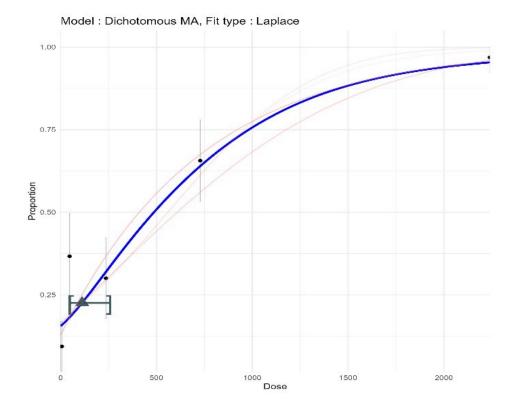
Example: Hepatic lesions in female mice (Larson, 1996)

• Dose-response data:

Internal dose (mg/L-d)	0	7	46.8	237	729	2240
Response	1 / 15	1/15	5 / 14	4 / 14	10 / 15	15 / 15

• BMD results:

Method	BMD (mg/L-d)	BMDL (mg/L-d)
Maximum likelihood (quantal-linear)	66.8	43.8
Model average (BMDS priors)	112.5	52.0 ^a


^aModel average BMDL is 19% higher than maximum likelihood BMDL.

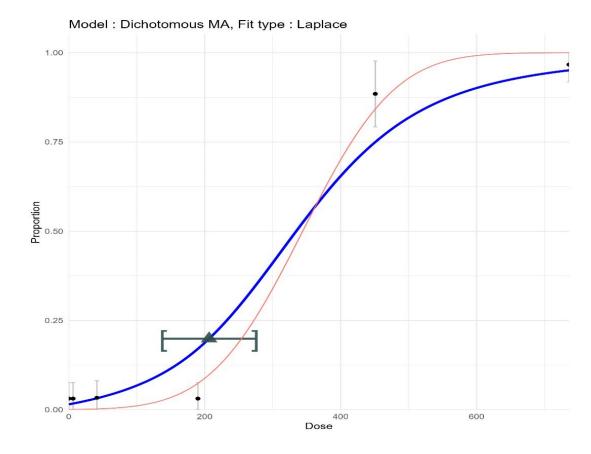
Example: Hepatic lesions in female mice (Larson, 1996)

Single model (maximum likelihood)

Model average (Bayesian)

Example: Kidney lesions in male mice (Larson, 1996)

• Dose-response data:


Internal dose (mg/L-d)	0	6.3	41.4	190	451	736
Response	0/15	0 / 15	0/14	0 / 15	11/12	14 / 14

• BMD results:

POD	Value (mg/L-d)	Value (mg/L-d)
Traditional	LOAEL = 451	NOAEL = 190
Model average (BMDS priors)	BMD = 206	BMDL = 139 ^a

^aModel average BMDL is 27% lower than NOAEL.

Example: Kidney lesions in male mice (Larson, 1996)

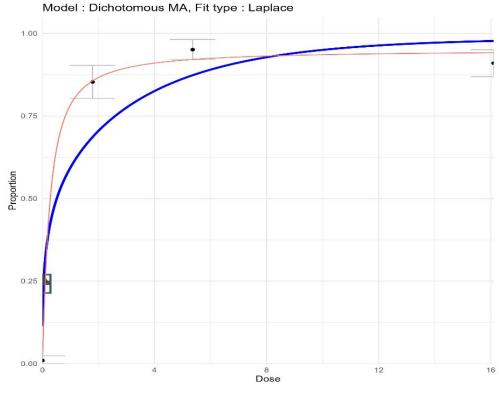
€EPA

Model average (Bayesian)

Example: Respiratory metaplasia in female rats (Yamamoto, 2002)

• Dose-response data:

Internal dose (mg/L-d)	0	1.79	5.36	16.1
Response	0 / 50	43 / 50	48 / 50	45 / 49

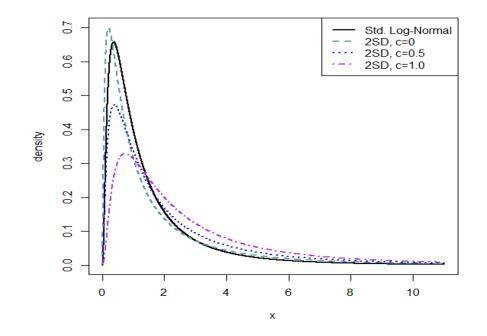

Example: Respiratory metaplasia in female rats (Yamamoto, 2002)

Model average results from ToxicR (BMDS priors)					
Model	BMD (BMDL, BMDU)	Pr(M Data)			
Hill	0.04 (0.00 ,0.26)	0.975			
Log-Logistic	0.00 (0.00 ,0.04)	0.017			
Log-Probit	0.01 (0.00 ,0.07)	0.007			
Quantal-Linear	0.25 (0.20 ,0.31)	0.000			
Multistage	0.28 (0.23 ,0.35)	0.000			
Weibull	0.00 (0.00 ,0.01)	0.000			
Gamma	0.00 (0.00 ,0.02)	0.000			
Logistic	0.70 (0.55 <i>,</i> 0.93)	0.000			
Probit	0.98 (0.79 <i>,</i> 1.24)	0.000			

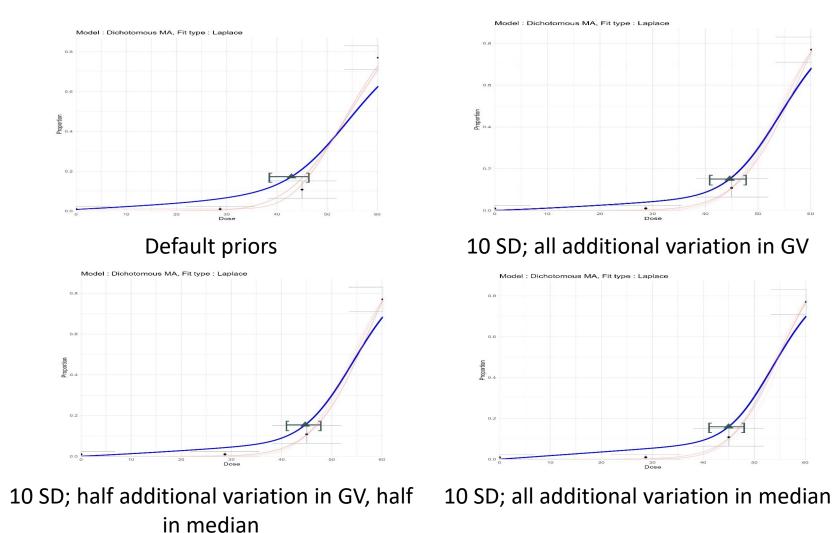
Model Average BMD: 0.04 (0.00, 0.26) 90.0% CI

Sepa

Example: Respiratory metaplasia in female rats (Yamamoto, 2002)



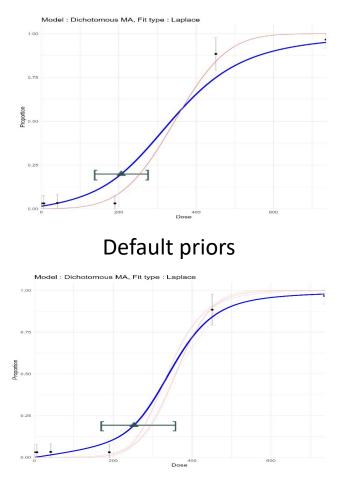
Model average (Bayesian)


Sensitivity Analysis

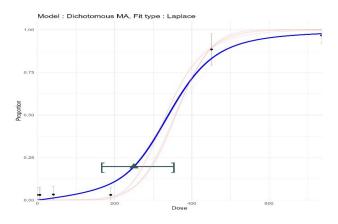
- Standard deviation (SD) of every parameter prior for every model multiplied by 2, 5, 10, and 0.5.
- For lognormal priors, additional variation incorporated three ways:
 - Through geometric variance (GV)
 - Through median
 - Half through GV, half through median

Model average priors (BMDS)	BMD (mg/L-d)	BMDL (mg/L-d)
Default	42.9	38.6
10 SD (for lognormal, all additional variation incorporated through GV)	44.6 (+4%)	40.9 (+6%)
10 SD (for lognormal, half additional variation incorporated through GV, half through median)	44.7 (+4%)	41.1 (+6%)
10 SD (for lognormal, all additional variation incorporated through median)	44.9 (+5%)	41.2 (+7%)

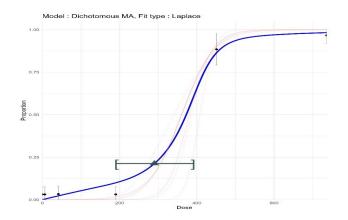
SFP



Example: Kidney lesions in male mice (Larson, 1996)


Model average priors	BMD (mg/L-d)	BMDL (mg/L-d)
Default	206	139
10 SD (for lognormal, all additional variation incorporated through GV)	250 (+21%)	168 (+21%)
10 SD (for lognormal, half additional variation incorporated through GV, half through median)	253 (+22%)	171 (+23%)
10 SD (for lognormal, all additional variation incorporated through median)	290 (+41%)	192 (+38%)

Set EPA


Example: Kidney lesions in male mice (Larson, 1996)

10 SD; half additional variation in GV, half in median

10 SD; all additional variation in GV

10 SD; all additional variation in median

- In many cases (esp. for "well-behaved" datasets), Bayesian model averaging yields results that are not very different from single model selection using maximum likelihood.
- Bayesian model averaging sometimes yields reasonable results for datasets that are not otherwise amenable to modeling.
- For some datasets, modeling is not advised, even with model averaging.
 - Explore assessment of model fit and adequacy of data for modeling.

Set EPA

Acknowledgements and References

- Collaborators: Christine Cai, Colin Peterson, Hyunsu Ju
- Chloroform co-assessment managers: Margaret Pratt, Andre Weaver
- Wheeler, M.W., et al., 2020. Quantitative risk assessment: developing a Bayesian approach to dichotomous dose–response uncertainty. Risk Anal. 40, 1706–1722.
- BMDS: <u>https://www.epa.gov/bmds</u>
- ToxicR: <u>https://github.com/NIEHS/ToxicR</u>